Testing System for Pressure Sensitive Cardiovascular Catheter

Friday, October 27th
Design Team

Team Members
- Danielle Ebben – Team Leader
- Erik Yusko – BWIG
- Anita Zarebi – BSAC
- Tony Wampole – Communications

Client
- Colette Wagner
- Dr. Nancy Sweitzer
 - Dept. of Cardiology, UW Medical School

Advisor
- Professor William Murphy
Overview

- Problem Statement
- Background material
- Product Design Specifications/Client Requirements
- Three design alternatives, explanation and analysis
- Future work
Problem Statement

- Pressure sensitive cardiovascular catheters are being used to verify a new blood pressure monitoring technology.
- The three pressure sensors on the catheter are not recording the same pressure.
- Need a system to verify accuracy of sensors or diagnose a problem.
Previous Work

- Pressure calibration procedure
- Tubular device
 - Sphygmomanometer induced pressure

Problems:
- Maintaining constant pressure
- Leaking saline
Client Requirements

- Testing system for catheter calibration
- Test at range of pressures
 - Atmospheric
 - Saline
 - Increments of 50 mmHg
- Controllable saline range
- Stable/constant calibration values
 - 2% allowable error
 - 200 mmHg max
- Short amount of time
- Sterility
- Inexpensive
Alternative #1: Rotating Cylinder Design

Various Size Weights

Saline Filled Tank

Catheter
Alternative #1: Rotating Cylinder Plunging Mechanism

Weight Selected

Plunger Head

When user selects weight, release rod retracts into cylinder, causing the weight to fall

Our Pressure Sensor

Catheter Sensor
Alternative #1: Rotating Cylinder Design

Pros
- User control over process
- Catheter sensor close to ours
- Fairly small size
- Neat/Clean Design
- Removable Saline

Cons
- Cost
- Time to Program
- Fabrication
- Saline contact
 - membrane instead of foam?
Alternative #2: Balloon Design

- Air tight container
- Balloon fills, increases pressure inside tank
- Pressure sensor regulates air pump
Alternative #2: Balloon Design

- **Pros**
 - Simplicity
 - Saline easily removed for storage
 - Many components already fabricated
 - Simple geometry for machining
 - May or May not be automated depending on client preference

- **Cons**
 - Gas/Liquid interface
 - Requires air/water tight seal
 - Automation may require additional computer program
 - Cost of automation
Alternative #3: Plunger Design

1. Filling port
2. Saline filled catheter chamber
3. Membrane
4. Air filled chamber
5. Piston Head Attached to LA
Alternative #3: Plunger Design

- Pressure Sensor in Saline Solution
- Amplifier Circuit
- A/D Conversion
- PC Controller
- Linear Actuator
- Changes Pressure
- User Input: Desired pressure
Alternative #3: Plunger Design

Pros

- Simple
- Repeatable
- Easily automated
- Allows for user control

Cons

- Requires air/water tight seal
- Moving components
- Difficult machining
Future Work

- Decide on specific design
 - Specifics within design (e.g. automation)
- Build prototype system
- Design calibration method
- Test system and calibration method
Questions?