
Lecture 3: Fluid Models For Tokamak Plasmas

J.D. Callen, University of Wisconsin, Madison, WI 53706-1609 USA

Lectures on “Fluid and transport modeling of plasmas” at
CEMRACS 2014 Summer School on Numerical modeling of plasmas, CIRM, Marseille, July 21–25, 2014

Questions To Be Addressed:

1) What extended MHD model results from moment equations?

2) Macrostability constraints, flux surfaces, currents in tokamaks?

3) What are the complete tokamak plasma transport equations?

Outline:

• Extended MHD model obtained from fluid moment equations

• Ideal MHD model, macroinstabilities and consequences

• Axisymmetric tokamak magnetic field geometry

• Neoclassical stress closures for tokamak plasmas

• Plasma currents and flows in tokamaks

• Comprehensive tokamak plasma transport equations
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Extended MHD Model Uses Fluid Moment Equations

• Recall the species s fundamental fluid moment equations:

density (∂/∂t+ ~Vs · ~∇)ns = −ns~∇·~Vs + Sns,

mom. msns(∂/∂t+ ~Vs · ~∇) ~Vs = nsqs(~E +~Vs× ~B)− ~∇ps − ~∇·↔πs + ~Rs + ~Sps,

entropy (∂/∂t+ ~Vs · ~∇) sMs = ṡMs ≡ (−~∇· ~qs −
↔
πs : ~∇~V s +Qs + Sεs)/ps.

• Extended MHD equations are obtained by summing fluid equa-
tions over e, i species using the definitions (assuming |~Vi| � vT i)

mass density (kg/m3) ρm ≡
∑

smsns = mene +mini ' mini

mass flow velocity (m/s) ~V ≡
∑

smsns~Vs/ρm ' ~Vi

current density (A/m2) ~J ≡
∑

s nsqs
~Vs = −nee (~Ve − ~Vi)

plasma pressure (N/m2) P ≡
∑

s ps = pe + pi

stress tensor (N/m2)
↔
Π ≡

∑
s

↔
πs '

↔
πi.
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Extended MHD Model Includes Ideal MHD And The
Dissipative Effects Of Collisional And Closure Moments

• The extended MHD equations for a magnetized plasma and the
associated electric and magnetic fields are thus (neglecting sources)

Extended MHD plasma description (for ideal MHD ~Re,
↔
Π,

↔
πe,

∑
s ṡMs → 0):

mass density (∂/∂t+ ~V ·~∇) ρm = − ρm~∇ · ~V ,

charge continuity ~∇ · ~J = 0,

momentum ρm (∂/∂t+ ~V ·~∇) ~V = ~J× ~B − ~∇P − ~∇ ·
↔
Π,

Ohm’s law ~E = − ~V× ~B + ~Re/nee+ ( ~J× ~B − ~∇pe − ~∇ ·↔πe)/nee,

equation of state (∂/∂t+ ~V ·~∇) ln(P/ρ5/3
m ) =

∑
s ṡMs.

Maxwell Equations for extended MHD (no Gauss’ law, ~E from Ohm’s law):

Faraday’s law ∂ ~B/∂t = − ~∇×~E,

no magnetic monopoles ~∇ · ~B = 0,

nonrelativistic Ampere’s law ~J = ~∇× ~B/µ0.
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Ideal MHD Model Has Some Special Properties

• Collisional effects are negligible unless ω <∼ νeff at resonances.

• Faraday’s law plus ~E = − ~V× ~B produce the frozen flux theorem:

∂ ~B

∂t
= −~∇×~E = ~∇×(~V× ~B) =⇒

dΨ

dt
=
d

dt

∫∫
S

~B · d~S = 0, which causes

~B to be advected with ~V perturbations (as in hydrodynamics Kelvin theorem).

• There are various types of ideal MHD Alfvén waves:

compressional, ω = k⊥
√
c2

A + c2
S ' k⊥cA — “fast” compressible waves ⊥ to ~B,

shear/torsional, ω = k‖cA — incompressible waves propagating ‖ to ~B,

parallel sound, ω = k‖cS — compressible waves propagating ‖ to ~B,

in which Alfvén speed is cA ≡ B/
√
µ0ρm and sound speed cS ≡

√
(5/3)P/ρm.

• In tokamak plasmas which have cA ∝ cS/
√
β � cS,

compressional waves enforce equilibrium radial plasma & ion force balances,

while shear, sound waves can become unstable =⇒ operational constraints.
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Ideal MHD Provides Tokamak Plasma Constraints

• Stable compressional Alfvén waves enforce equilibrium radial force
balance on very short time scales (ā/cA ∼ 10−7 – 10−6 s) and yield

ideal MHD equilibrium equations: ~J× ~B = ~∇P , ~J = ~∇× ~B/µ0, ~∇ · ~B = 0.

• If the shear Alfvén or sound waves become unstable,

they grow on very fast time scales (R/cA ∼ 10−5 – 10−6 s), and

usually lead to virulent global instabilities and hence plasma “disruptions.”

• Stability criteria for avoiding these ideal MHD macroinstabilities
provide limits on parameter regimes in which tokamaks operate:

sound wave stability, β ≡
P

B2/2µ0

<∼
a

Rq
∼ 0.1 (analogous to Rayleigh-Taylor),

shear Alfvén stability, q '
aBt

RBp

≥ 1 (Kruskal-Shafranov criterion, kink modes).

• Further tokamak analyses assume these ideal MHD stability cri-
teria are satisfied so virulent macroinstabilities are circumvented.
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Tokamaks Have Axisymmetric MHD Equilibrium
Magnetic Flux Surfaces And Coordinate Systems

• Key coordinates are major radius R, poloidal angle θ and toroidal
(axisymmetry) angle ζ and poloidal magnetic flux ψp.

• Poloidal magnetic field ~Bp is defined via poloidal magnetic flux:

ψp =
1

2π

∫∫
d~Sθ · ~Bp =

1

2π

∫∫
d~Sθ ·~∇× ~At =

1

2π

∫
d~̀· ~At = −RAt, which yields

~Bp ≡ ~∇× ~At = ~∇×(−ψp
~∇ζ) = ~∇ζ×~∇ψp.

• Toroidal magnetic field ~Bt is axisymmetric so since |~∇ζ| = 1/R,

~Bt = RBt
~∇ζ = I ~∇ζ, in which I(ψp, θ) = RBt.

• The axisymmetric (∂/∂ζ = 0) helical magnetic field in a tokamak
is thus composed of toroidal and poloidal components:
~B = ~Bt + ~Bp = I ~∇ζ + ~∇ζ×~∇ψp = ~∇ψp×~∇[ q(ψp) θ − ζ ], in which

q(ψp) =
dζ

dθ
≡

~Bt · ~∇ζ
~Bp · ~∇θ

=
I

R2( ~B0 ·~∇θ)
for a “straight field line” coordinate θ.
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Poloidal Flux Surfaces Obey Grad-Shafranov Equation

• The tokamak magnetic field and current density are

~B ≡ I ~∇ζ + ~∇ζ×~∇ψp, µ0
~J = ~∇× ~B = ~∇I×~∇ζ + ~∇ζ ∆∗ψp,

in which the magnetic differential operator ∆∗ is defined by

∆∗ψp ≡
1

|~∇ζ|2
~∇ · (|~∇ζ|2~∇ψp) = R2 ~∇ ·

~∇ψp

R2
=
∂2ψp

∂R2
−

1

R

∂ψp

∂R
+
∂2ψp

∂Z2
.

• Ideal MHD equilibrium, radial force balance ~J× ~B = ~∇P yields

~B · ~∇P = 0 =⇒ P = P (ψp),

~J · ~∇P = 0 =⇒ (dP/dψp) ( ~J · ~∇ψp) = 0 =⇒ ∂I/∂θ = 0 =⇒ I = I(ψp),

~∇ψp · ( ~J× ~B − ~∇P ) = 0 =⇒ ∆∗ψp = −µ0R
2 dP (ψp)

dψp

− I(ψp)
dI(ψp)

dψp

,

which is called the Grad-Shafranov equation.

• For specified functions P (ψp) and I(ψp), this is a nonlinear elliptic
equation for ψp(R,Z) that is usually solved numerically.
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Flux Surfaces Shift Outward As Plasma βp Increases

• Poloidal flux surfaces in a circular fixed boundary tokamak1

have key variables A ≡
major radius

minor radius
=
R

a
(aspect ratio), βp ≡

P

B2
p/2µ0

.

1J.D. Callen and R.A. Dory, “Magnetohydrodynamic Equilibria in Sharply Curved Axisymmetric Devices,” Phys. Fluids 15, 1523 (1972).

Figure 1: Schematic illustration of ψp flux surfaces showing variation of Bt with R,

surfaces of constant toroidal current Jt, and variation of Jt with R on the mid-

plane. Shading in (c) indicates a region with reversed current. The parameter

∆ measures outward nesting of flux surfaces and is called the Shafranov shift.
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DIII-D Tokamak Experiment Has Divertor Separatrix

• DIII-D Parameters:

major radius 1.7 m,

minor radius 0.6 m,

aspect ratio 2.8.

• Flux surface
geometry is

a two-dimensional (2-D)

magnetic geometry,

has a free boundary,

and imbedded divertor

magnetic separatrix,

for which the Grad-

Shafranov equation is

solved numerically.

Figure 2: DIII-D experiment at GA in San Diego, CA

(http://fusion.gat.com/global/DIII-D) is a U.S.

national facility that has been operating since late

1980s, continually adding diagnostics & hardware.
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Collisional Dissipative Effects Are Important For t > 1/ν

• Resistivity effects reconnect (or tear) magnetic field lines in thin
singular layers around low order rational surfaces where q(ψp) =
m/n on which the helical magnetic field lines close on themselves.

• This reconnection violates the frozen flux theorem of ideal MHD
and can allow slowly growing, radially isolated tearing-type (clas-

sical ~∇Jt-driven and neoclassical ~∇P -driven) macroinstabilities.

• These modes can cause magnetic island topologies to develop in
the plasma which sometimes continue to grow and violently dis-
rupt plasma confinement, i.e., lead to a plasma “disruption.”

•When such deleterious macroinstabilities are controlled, the equi-
librium extended MHD equations yield prescriptions for the first
order (in small gyroradius expansion) equilibrium and perturbed
flows & currents (and hence Ohm’s law) on magnetic flux surfaces.

• Key closure for low collisionality tokamaks is viscous stress
↔
πs.
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Low Collisionality Viscous Stresses Are Different

• For a physical analogy, consider flow of a neutral (n) fluid down a
“bumpy cylinder pipe” of radius a and axial periodicity length L‖:

for short collision lengths (i.e., λn � a, L‖) the viscous diffusivity is isotropic

and µ ∼ νnλ2
n = v2

Tn/νn — momentum diffuses to walls at rate νnλ
2
n/a

2 � νn;

however, for long collision lengths (i.e., λn � L‖) if the neutrals were held at

the same radius (as charged particles are by ~B), the parallel (axial direction)

viscous diffusivity would be µz ∼ νnL2
‖ — axial momentum would be relaxed

by collisions with the L‖ bumps instead of over the collision length λn. Then

the momentum relation rate would be µz|(∂2Vz/∂z
2)/Vz| ∼ νnL2

‖/L
2
z ∼ νn.

• Low collisionality tokamak plasmas have long collision lengths
λs ≡ vTs/νs compared to the L‖ ' Rq for variations of B = | ~B|
along the ~B = ~Bt + ~Bp helical magnetic field lines.

• Key issue for determining parallel flows and electrical resistivity
in tokamak fusion plasmas is determination of the parallel viscous

stresses
↔
πs‖ and resultant forces in the low collisionality regime.
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Consider Collisional Stresses In A Magnetized Plasma

• Collisional Braginskii viscous stresses are defined relative to ~B direction:

↔
π =

↔
π‖+

↔
π∧+

↔
π⊥, parallel, cross (gyroviscous) and perpendicular stresses.

• For strongly magnetized (ωc � 1/ν) toroidal plasmas of fusion interest a small

gyroradius expansion is usually appropriate: %∗ ≡ %/a� 1.

• For arbitrary ~V , the characteristic scalings of the parallel, cross and perpen-

dicular stresses can be written schematically for Rq >∼ λ >∼ a as

↔
π‖ ∼ νλ2 ~∇‖~V ,

↔
π∧ ∼ ν% λ ~B×~∇~V/B ∼ %∗

↔
π‖,

↔
π⊥ ∼ ν%2 ~∇⊥~V ∼ %2

∗
↔
π‖.

• Thus, the parallel viscous stress
↔
π‖ is dominant in small gyroradius, magnetized

toroidal plasmas. We concentrate on it. The
↔
π∧ and

↔
π⊥ are changed less.

• The parallel viscous stresses for electrons and ions were originally written by

Braginskii for each species in the form (z here is coordinate along ~B, Zi = 1)

↔
π‖ = − η0Wzz ~̂ez~̂ez, Wzz ≡ 2

∂Vz

∂z
−

2

3
(~∇·~V ), ηi0 = 0.48nimi

v2
T i

νi
, ηe0 = 0.37neme

v2
Te

νe
.

• But this is not valid for low collisionality tokamak plasmas where λe≡vTe/νe�L‖.
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Stress Tensor Has A General Magnetic Field Geometry Form

• Braginskii viscous force due to CGL form for parallel stresses is

↔
π‖ ≡ π‖

 ~B ~B

B2
−
↔
I

3

, π‖ ≡ −
3

2
η0

~B ·W · ~B
B2

, W ≡ ~∇~V + (~∇~V )T −
2

3

↔
I (~∇·~V ).

• Parallel component of parallel rate of strain tensor has a couple of forms:

~B ·W · ~B/2 = B( ~B ·~∇)(~V· ~B/B) + [ ~B×( ~B×~V )] ·~κ− (B2/3)~∇·~V

= B2~V ·~∇ lnB + ~B ·~∇×(~V× ~B) + (2B2/3)~∇·~V − ( ~B·~V )(~∇· ~B).

• After fast time scales of compressional Alfvén and sound wave relaxations,
~B ·~∇×(~V× ~B) ' 0, ~∇·~V = 0 and ~V⊥ = (1/B2) ~B×~∇f , the last form yields

π‖ = − 3η0(~V ·~∇ lnB)+∆π‖, ∆π‖ ≡ − (3η0/B
3)( ~B·~∇f)[ ~B ·~∇×( ~B/B)] ∼ β(k‖a).

• Viscous force from Braginskii viscous stress is [~κ ≡ (b̂ ·~∇)b̂ is curvature vector]

~∇ ·↔π‖ = π‖ [~κ− ~B( ~B ·~∇ lnB)/B2] + (1/B2) ~B( ~B ·~∇)π‖ − (1/3)~∇π‖

=⇒ ~B ·~∇·↔π‖ = −π‖ ( ~B · ~∇ lnB) + (2/3)( ~B · ~∇)π‖.

• Flux-surface-average (FSA), neglect the small ∆π‖, and use ~V ·~∇ lnB

= ( ~B ·~∇ lnB)Uθ(ψp) to obtain “residual” FSA parallel (to ~B) viscous force:

〈 ~B ·~∇·↔π‖〉 ' 3η0 〈( ~B ·~∇ lnB)2〉Uθ, in which Uθ(ψp) ≡
~V ·~∇θ
~B ·~∇θ

from ~∇·~V = 0.
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Tokamak Neoclassical Theory Uses 2-D Axisymmetric (A) ~B Field

• An axisymmetric magnetic field and coordinate system are needed to connect

to FSA parallel viscous forces in low ν “neoclassical” transport theory.2,3

• The 2-D axisymmetric (A) equilibium magnetic field ~B0 ≡ ~Bt+ ~Bp has toroidal

and poloidal parts. It is written in terms of the poloidal magnetic flux ψp:

~B0(ψp, θ) = I ~∇ζ + ~∇ζ×~∇ψp = ~∇ψp×~∇ [ q(ψp) θ − ζ ], I(ψp) ≡ RBt.

• The radial, poloidal straight-field-line, and toroidal axisymmetry coordinates

are taken to be ψp, θ, ζ for which the poloidal rotation of a field line per unit

toroidal rotation is dθ/dζ = 1/q(ψp) ≡ ~B0 · ~∇θ/ ~B0 · ~∇ζ.

• The Jacobian for transforming from the laboratory (~x) to these (non-orthogonal)

curvilinear coordinates is
√
g ≡ 1/(~∇ψp · ~∇θ×~∇ζ) = 1/ ~B0 · ~∇θ = qR2/I. The

2-D flux surface average (FSA) of a scalar function f(~x) is defined by

〈f(~x)〉 ≡
∫ 2π

0 dζ
∫ 2π

0 f(~x) dθ/ ~B0 · ~∇θ
2π
∫ 2π

0 dθ/
~B0 · ~∇θ

, flux surface average of f(~x).

• The FSA annihilates parallel derivatives of scalar functions: 〈 ~B0 · ~∇f〉 = 0.

2F.L. Hinton and R.D. Hazeltine, “Theory of plsma transport in toroidal confinement systems,” Rev. Mod. Phys. 48, 239 (1976)
3S.P. Hirshman and D.J. Sigmar, “Noclassical transport of impurities in tokamak plasmas,” Nucl. Fusion 21, 1079 (1981).
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FSA Neoclassical Parallel Viscous Closures Have Matrix Structure

• In all collisionality regimes the residual FSA parallel viscous force 〈 ~B0·~∇·
↔
π‖〉

and parallel viscous heat force 〈 ~B0·~∇·
↔
Θ‖〉 can be written in matrix form:3,4[

〈 ~B0·~∇·
↔
π‖〉

〈 ~B0·~∇·
↔
Θ‖〉

]
=
mn

τ
〈B2

0〉 M ·
[
Uθ
Qθ

]
,

1

τss
≡

4

3
√
π

4π nsq
4
s ln Λ

{4πε0}2m2
s v

3
Ts

, collision frequency.

• The matrix of dimensionless viscosity coefficients M is defined by

M ≡
[
µ00 µ01

µ01 µ11

]
= νrefτss

ft

fc

[
K̂00

5
2
K̂00−K̂01

5
2
K̂00−K̂01 K̂11−5 K̂01+ 25

4
K̂00

]
,

ft

fc
∼ 1.46

√
ε, trap frac.

• The multi-collisionality “total” positive-definite coefficients K̂tot
ij are4,5

K̂tot
ij =

K̂B
ij[

1 + ν
1/2
∗s + 2.92 ν∗sK̂

B
ij/K̂

P
ij

] [
1 + 2K̂P

ij/(3ωtsτssK̂
PS
ij )

], ν∗s ∼
νs

ε3/2vT/R0q
.

4See Ref. [11] supplementary material in J.D. Callen, C.C. Hegna and A.J. Cole, Phys. Plasmas 17, 056113 (2010), which is available as J.D. Callen, “Vis-
cous Forces Due To Collisional Parallel Stresses For Extended MHD Codes,” Report UW-CPTC 09-6R via http://www.cptc.wisc.edu/Reports.html.

5In retrospect, the ν1/2
∗s low collisionality regime boundary layer term added phenomenologically in Ref. 4 and K̂tot

ij probably should be omitted.

Table 1: Asymptotic dimensionless viscosity coefficients. In plasmas with impurities the ion charge Z becomes Zeff for electrons
and similar modifications occur for ions. In rightmost column D ≡ (6/5)(2Z2 + 301/48

√
2 + 89/48) is 2×2 determinant of G.

regime: banana (B) plateau (P ) Pfirsch-Schlüter (PS), Braginskii

K̂00 [Z +
√

2− ln(1+
√

2)]/(νsτss)
√
π (17Z/4 + 205/48

√
2)/D

K̂01 [Z + 1/
√

2]/(νsτss) 3
√
π (7/2)(23Z/4 + 241/48

√
2)/D

K̂11 [2Z + 9/4
√

2]/(νsτss) 12
√
π (49/4)(33Z/4 + 325/48

√
2)/D
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Poloidal Flow Is Obtained From Plasma ‖ Force Balance

• Summing ‖ force balances (momentum equations) over species
yields (neglecting fluctuations and sources here for simplicity)

mini0
∂〈B0Vi‖〉
∂t

' −〈 ~B0·~∇·
↔̄
πi〉.

• The poloidal flow is determined mainly by the ion ‖ viscous force:

〈 ~B·~∇·↔πi‖〉 '
mini0

τii

[
µi00Uiθ + µi01

−2

5niTi
Qiθ + · · ·

]
〈B2〉, µi00, µi01 ∼

√
ε.

• For t > 1/νi ∼ 1 ms, poloidal flow obtained from 〈 ~B0 ·~∇·
↔
πi‖〉 ' 0 is

U0
iθ(ψp) ≡

~V ·~∇θ
~B ·~∇θ

' −
µi01

µi00

−2

5niTi
Qiθ ' ki

I

qi〈B2〉
dTi0

dψp

=⇒ Vp '
1.17

qiB

dTi0

dr
.

• Given poloidal flow (Ω∗p≡I Uiθ/R2), relation of toroidal flow to Er is

Ωt ≡ ~V ·~∇ζ = −
(
dΦ

dψp

+
1

niqi

dpi

dψp

)
+ Ω∗p =⇒ Vt '

Er

Bp

−
1

niqiBp

dpi

dr
+

1.17

qiBp

dTi

dr
.
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Low ν Flow Damping Can Be Included In ‖ Viscous Stress

• A multi-collisionality parallel stress that yields the Braginskii and flux-surface-

averaged (FSA) neoclassical closures has been proposed4

π‖ = πf
‖ + πr

‖ ,

fast, πf
‖ ≡ − 3 η00

(
~B ·~∇×(~V× ~B)

B2
+

2

3
~∇·~V −

( ~B · ~V )(~∇· ~B)

B2

)
,

residual, πr
‖ ≡ − mnµ 〈B

2
0〉

b̂ ·~∇B0

〈 (b̂ ·~∇B0)2〉
(
Uθ − U0

θ

)
, b̂ ≡ ~B0/B0.

• Neoclassical poloidal flow damping frequency µ is of the form

µ '
1.46
√
ε ν

(1 + ν
1/2
∗ + ν∗)(1 + ε3/2ν∗)

, for collisionality parameter ν∗ ≡
ν

ε3/2ωt
=

R0q

ε3/2λ
.

=⇒ banana regime for ν∗ � 1, plateau for 1� ν∗ � ε−3/2, Braginskii for ν∗ � ε−3/2.

• The “offset” poloidal flow velocity for ions is given by

U0
iθ(ψp) ' ki

I(ψp)

qi〈B2
0〉
dT0

dψp
, in which ki =

µi01/µi00

1 + (µi11 − µ2
i01/µi00)/νi11

∼
1.17

1 + 0.67
√
ε
.

JDC Lecture 3/CEMRACS 2014, CIRM, Marseille, France — July 21–25, 2014, p 17



Plasma Resistivity Can Be Determined At Various Levels I

• Plasma resistivity can be estimated from electron force balance equation with
~B = ~0 assuming electron distribution is a flow-shifted Maxwellian:

0 = −nee~E + ~R, with ~R ≡ −mene νe (~Ve − ~Vi) = nee η0
~J , collisional friction force,

=⇒ ~E = η0
~J, in which η0 ≡

meνe

nee2
, reference (⊥) electrical resistivity.

• But since ν ∼ v−3 tail electrons suffers less collisions on average, the ~E field in-

duces a heat flow and one must solve combination of flow & heat flow equations:[
0
0

]
=

[
−nee~E

0

]
+

[
~RJ

~RT

]
,

[
~RJ

~RT

]
≡ −

mene

τee

[
Z 3

2
Z

3
2
Z
√

2 + 13
4
Z

]
·
[
~Ve − ~Vi
− 2

5neTe
~qe

]
,

in which τee is the reference electron collision time.

• For a plasma composed of electrons (e), hydrogenic ions (i, Zi=1) and impurity

ions (nI, ZI) with the same flow velocity as the hydrogenic ions

Z → Zeff ≡
ni +

∑
I nIZ

2
I

ne
, which is typically ∼ 2–3 in tokamak plasmas.

• Using the electron collisional friction coefficient matrix Le (see p 22 in Lecture 2),

the 2×2 matrix equation above can be written in the form (using νe ≡ Zeff/τee)[
~RJ

~RT

]
=
nee η0

Zeff

Le ·
[

~J
2e
5Te
~qe

]
≡
[
nee~E

0

]
, Le ≡

[
Zeff

3
2
Zeff

3
2
Zeff

√
2 + 13

4
Zeff

]
.
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Plasma Resistivity Determination II: Spitzer Conductivity

• Current and heat flow are obtained by inverting the friction matrix Le:[
~J

2e
5Te
~qe

]
=
Zeff

η0

[Le]
−1 ·

[
~E

0

]
, whose first row yields the Ohm’s law ~J = σSp ~E.

• The Spitzer electrical conductivity σSp includes electron heat flow effects via

their effects in the inverse of the 2×2 matrix Le of friction coefficients:

σSp ≡
Zeff

η0

[Le]
−1
00 =

1

η0

√
2 + (13/4)Zeff√

2 + Zeff

=⇒
1.93

η0

for Zeff = 1,
3.25

η0

for Zeff →∞.

The standard Spitzer/Braginskii coefficient for Z = 1 is 1.96, which differs from this 2×2
matrix result by less than 2%. Greater accuracy is obtained from 3×3 or higher order
matrices that take account of energy-weighted heat flow etc., but is unwarranted because
the collision operator is only accurate to O{1/ ln Λ} ∼ 1/17 ∼ 6%.

• In a uniform magnetic field ~B the plasma electrical conductivity is anisotropic:

σ‖ ≡ σSp
‖ > 1/η0, because ~E‖ causes electron heat flow along ~B, but

σ⊥ ≡ 1/η0, because ~E⊥ causes heat flow in ~E⊥× ~B, not ~E⊥ direction.
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Plasma Resistivity Determination III: Viscosity Effects

• The magnetic field varies poloidally in tokamaks. It induces parallel viscous

and viscous heat forces that add to FSA parallel force balance equations:

0 = −nee〈 ~B0 ·~E
A
〉+ 〈 ~B0·~RJ〉 − 〈 ~B0 ·~∇ ·

↔
πe‖〉, 〈 ~B0 ·~∇φ〉 = 0, 〈 ~B0 ·~∇pe〉 = 0,

0 = 〈 ~B0·~RT 〉 − 〈 ~B0 ·~∇·
↔
Θe‖〉, 〈 ~B0 ·~∇Te〉 = 0.

• In matrix form the FSA parallel viscous flow and heat flow forces are:[
〈 ~B0 ·~∇ ·

↔
πe‖〉

〈 ~B0 ·~∇ ·
↔
Θe‖〉

]
≡
mene

τee
Me ·

[
〈B2

0 〉Ueθ
〈B2

0 〉Qeθ

]
=
mene

τee
Me ·

[
− 1
nee

(〈 ~B0 · ~J〉+ I dP
dψp

) + Uiθ
−2
neTe
〈 ~B0 · ~qe〉+ I

e
dTe
dψp

]
,

Me ≡
[
µe00 µe01

µe01 µe11

]
∼ 1.46

√
ε

[
0.533 + Zeff 0.625 + 3

2
Zeff

0.625 + 3
2
Zeff 1.386 + 13

4
Zeff

]
.

• Matrix equation for the FSA parallel force, heat force balances becomes

η0

Zeff

(
[Le + Me] ·

[
〈 ~B0 · ~J〉

2e
5Te
〈 ~B0 · ~qe〉

]
+ Me ·

[
I dP/dψp − nee〈B2

0〉Uiθ
−neI dTe/dψp

])
=

[
〈 ~B0 · ~E

A
〉

0

]
.

• This is solved for parallel current 〈 ~B0 · ~J〉 by inverting [Le + Me] matrix.
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Resistivity Determination IV: Neoclassical Ohm’s Law

• Neoclassical FSA parallel Ohm’s law that results from matrix inversion is4

〈 ~B0 · ~E
A
〉 = ηnc

‖ ( 〈 ~B0 · ~J〉 − 〈 ~B0 · ~Jbs〉 ), neoclassical parallel Ohm’s law.

• The parallel neoclassical resistivity ηnc
‖ is

ηnc
‖ ≡

η0/Zeff

[Le + Me]
−1
00

∼ η0

(
1 +

µ

ν

)
|Le|�|Me|

=⇒
η0/Zeff

[Le]
−1
00

≡
1

σSp
‖
.

• The bootstrap current 〈 ~B0 · ~Jbs〉 is driven by radial pressure gradient dP/dψp:

〈 ~B0 · ~Jbs〉 =
[
[Le + Me]

−1·Me

]
00

(
−I

dP

dψp

+ nee〈B2
0〉Uiθ

)
+
[
[Le + Me]

−1·Me

]
01

(
neI

dTe

dψp

)
∼ −

µ

ν + µ
I
dP

dψp

∼ −
√
ε
B0

Bp

dP

dr
.

• In order to extend this to a local description, note that bootstrap drive is

I
dP

dψp
≡ B2

0

~J⊥ ·~∇θ
~B0 ·~∇θ

=⇒ B2
~J⊥ ·~∇θ
~B ·~∇θ

, for ~J⊥ ≡
~B×~∇P
B2

with ~B·~∇P = 0 =⇒ P (ψp).
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Tokamak Extended MHD Model Is Obtained From Fluid Equations

• Plasma density and charge continuity equations result from sums over species:∑
s

nsms =⇒
∂ρm

∂t

∣∣∣∣
~x

+ ~∇ · ρm~V =
∑
s

msSns,
∑

s nsqs =⇒ ~∇ · ~J = 0.

• Total plasma equation of state (entropy eqn.) is unchanged from usual form (p 3).

• Plasma force balance is obtained by summing momentum equations over species:4

∂(ρm~V )

∂t

∣∣∣∣∣
~x

+ ~∇ · (ρm~V ~V ) = ~J× ~B − ~∇P −
∑
s

(~∇·↔π
f

s‖ + ~∇·↔π
r

s‖ + ~∇·↔πs∧) +
∑
s

~Sps.

• General Ohm’s law is obtained from electron force balance equation (b̂ ≡ ~B/B):

~E = − ~V× ~B +
~J× ~B − ~∇pe − ~∇·↔π

f

e‖ − ~∇·↔πe∧− C∇Tne b̂ (b̂ ·~∇Te) + ~Spe

nee

+
1

σ⊥

(
~J⊥ −

3

2

ne ~B×~∇Te
B2

)
+ ηnc

‖

(
~J‖ − ~J‖drives

)
−
me

e

(
∂

∂t
+ ~Ve·~∇

)
~Ve,

~J⊥ ≡ −b̂×(b̂× ~J),

~J‖ ≡ b̂ (b̂ · ~J).

• Use ~J‖drives ≡
~B

B
〈 ~B0 · ~Jdrives〉 fom p 32, but I

dP

dψp
→ B2

~J⊥·~∇θ
~B ·~∇θ

in 〈 ~B0 · ~Jbs〉.
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Key Properties Of Tokamak Extended MHD Model

• Tokamak extended MHD model adds collisional effects for t > 1/νs

primarily via the viscous forces due to the parallel viscous stresses
↔
πs‖, which

for t > 1/νe ' 0.2 ms modifies parallel Ohm’s law by increasing ‖ resistivity
plus adds bootstrap current driven by the radial plasma pressure gradient,

and for t > 1/νi ' 34 ms damps the poloidal ion flow to Uiθ ∝ dTi/dψp and
increases the plasma’s ⊥ flow inertia from ∝ ρm/B2 to ∝ ρm/B2

p.

• It is important to recall that the extended MHD model “owns”
the current density ~J because

in MHD models ~J = ~∇× ~B/µ0 in which the magnetic field is determined
from Faraday’s law ∂ ~B/∂t = −~∇×~E with the electric field being
determined from the extended MHD Ohm’s law (preceding viewgraph),

and proper solutions of the Chapman-Enskog kinetic equation yield kinetic
distortions Fs that have no momentum moments (i.e.,

∫
d3vms~v Fs = ~0)

and hence produce no contributions to ~J .

• Next (final) step will be to obtain net radial transport equations
for a tokamak plasma on the long transport time scale t� 1/νs.
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Next Step: Develop Modern Transport Equations For Tokamaks

• Tokamak plasma transport equations for modeling codes (e.g., ONETWO,

TRANSP) were developed in late 70’s from n, T fluid moment equations with

collisional Braginskii closures; and then ad hoc terms are added for

neoclassical effects on ‖ Ohm’s law (trapped particle effects on η‖ and bootstrap current),

fluctuation-induced transport induced by micro-turbulence,

heating & current-drive and flow sources & sinks,

effects of small 3-D magnetic field asymmetries, etc.

• But tokamak plasmas are not in a collisional regime! (λ� Rq) — and trans-

port equations that naturally include all these effects should be developed.

• Here, self-consistent fluid-moment-based radial transport equations that in-

clude all these effects for nearly axisymmetric single-ion-species tokamak plas-

mas will be developed6,7 using neoclassical-based closures.

• The procedures used (solve for flows in flux surfaces first) and net plasma

transport equations are analogous to those developed for stellarator transport.8

6J.D. Callen, A.J. Cole and C.C. Hegna, “Toroidal rotation in tokamak plasmas,” Nucl. Fusion 49, 085021 (2009).
7J.D. Callen, A.J. Cole, and C.C. Hegna, “Toroidal flow and particle flux in tokamak plasmas,” Phys. Plasmas 16, 082504 (2009); Erratum Phys.

Plasmas 20, 069901 (2013).
8See for example K.C. Shaing and J.D. Callen, Phys. Fluids 26, 3315 (1983) and references cited therein.
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Velocity Moments Of PKE Yield Fluid Moment Equations

• Start from the conservative form of the 6-D plasma kinetic equation (PKE)

that includes the Fokker-Planck Coulomb collision operator C{f} and a kinetic

sources operator S{f}, in laboratory coordinates (~x):

∂f

∂t

∣∣∣∣
~x

+
∂

∂~x
· [~v f ] +

∂

∂~v
·
[
q

m
(~E + ~v× ~B) f

]
= C{f} + S{f}.

• Take velocity-space moments [
∫
d3v (1,m~v,mv2/2) ] of this PKE to obtain

fluid moment equations for each species in their conservative forms (p ≡ nT ):

density
∂n

∂t

∣∣∣∣
~x
+ ~∇·n~V = Sn,

momentum
∂

∂t

∣∣∣∣
~x

(mn~V ) + ~∇· (mn ~V ~V ) = nq (~E + ~V× ~B)− ~∇p− ~∇·↔π + ~R+ ~Sp,

energy
3

2

∂p

∂t

∣∣∣∣
~x

+ ~∇·
(
~q +

5

2
p ~V

)
= Q+ ~V ·~∇p− ↔π : ~∇~V + Sε.

• Determine closures for
↔
π, ~q kinetically from CEKE — do not use Braginskii.

• Luckily, only FSA parallel viscous forces 〈 ~B ·~∇·↔πs‖〉 will be needed.
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A Number Of Assumptions Facilitate The Analysis

1) Possible extended MHD macroinstabilities are stabilized or controlled.

2) Small gyroradius expansion, which to zeroth order yields magnetohydro-

dynamic (MHD) radial force balance equilibrium, flows within flux surfaces

at first order, and second order transport fluxes across flux surfaces.

3) Axisymmetric nested flux surfaces to lowest order (i.e., no magnetic is-

lands in region of interest).

4) Gyroradius-small ~B non-axisymmetries (NA), by assuming 2-D toroidal

axisymmetry to lowest order and that 3-D toroidal non-axisymmetries in the

magnetic field ~B are first order in the gyroradius expansion.

5) Banana-plateau collisionalty regime where collision lengths are long com-

pared to plasma toroidal circumference so plasma properties are constant on

magnetic flux surfaces — valid almost out to the 2-D divertor separatrix.

6) Gyroradius small plasma fluctuations which lead mostly to second order

“anomalous” plasma transport across flux surfaces.

7) Slow poloidal magnetic field transients and weak sources and sinks that

occur and contribute on the plasma transport or longer time scale.
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Multi-Stage Strategy Is Used To Develop Transport Equations7,9

• I. Average the density, momentum and energy equations over fluctuations (i.e.,

average over toroidal angle ζ) and then flux-surface-average (FSA) them.

• II. Key Elements Of New Approach: Consider sequentially specific components of

the equilibrium force balance equations and their consequences:

IIA. Radial: Use zeroth order radial force balance enforced by compressional Alfvén waves
to obtain relation between toroidal & poloidal flows and radial electric field Eρ & dpi/dρ.

IIB. Parallel (poloidal): Determine parallel neoclassical Ohm’s law and first order poloidal
flows & heat flows within a flux surface from equilibrium momentum & heat flux equations.

IIC. Toroidal: Require net radial current from all particle fluxes to vanish and thereby
determine FSA toroidal momentum equation, and hence toroidal rotation Ωt (and thus Eρ).

• III. Substitute net second order ambipolar fluxes into FSA transport equations

to obtain final comprehensive “radial” transport equations — for ambipolar

ne = Zini, pe, pi, and Ωt ≡ ~V ·~∇ζ ' Vt/R (toroidal plasma rotation frequency).

9J.D. Callen, C.C. Hegna, and A.J. Cole, “Transport equations in tokamak plasmas,” Phys. Plasmas 17, 056113 (2010).
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Natural ~B-Field-Based Tokamak Coordinates Are Non-Orthogonal

• Coordinates ρ, θ, ζ. Toroidal-flux-surface-based radial variable is defined by

ρ ≡
√
ψt/πBt0 (m) plus poloidal (θ), toroidal (ζ) angles are used, non-orthogonal:

~e ρ ≡ ~∇ρ, ~e θ = ~∇θ, ~e ζ = ~∇ζ, ~eρ =
√
g ~∇θ×~∇ζ, ~eθ =

√
g ~∇ζ×~∇ρ, ~eζ =

√
g ~∇ρ×~∇θ,

√
g ≡ 1/~∇ρ ·~∇θ×~∇ζ = ψ′pqR

2/I, and from axisymmetry ~eζ = R2~∇ζ = R~̂eζ, ~̂eζ ≡ ~∇ζ/|~∇ζ|.

• Average ~B0. Lowest order axisymmetric equilibrium ~B0 is represented in

terms of the poloidal magnetic flux ψp(ρ, t):

~B0(ρ, θ) ≡ ~Bt + ~Bp ≡ I ~∇ζ + ~∇ζ×~∇ψp = ~∇ψp×~∇(qθ − ζ), I(ψp) = RBt.

• ‖, ⊥ Directions. Parallel, perpendicular directions are relative to ~B0:

~A‖ ≡ ( ~B0 · ~A)/B0, ~A⊥ ≡ − ~B0×( ~B0× ~A)/B2
0.

• Flux-Surface-Averaging (FSA). Has key properties [V (ρ) ≡
∫ ρ

0 d
3x = volume]:

〈f(~x)〉 ≡
∫
dθ
∫
dζ
√
g f(~x)∫

dθ
∫
dζ
√
g

, 〈 ~B0 · ~∇f〉 = 0, 〈~∇ · ~A〉 =
d

dV
〈 ~A ·~∇V 〉 =

1

V ′
d

dρ
(V ′〈 ~A ·~∇ρ〉).
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A Small Gyroradius Expansion Is Used

• Gyroradius Expansion. Order terms and physical processes such as equilib-

rium, Pfirsch-Schlüter flows, non-axisymmetries (NA) and fluctuations as

%∗ ∼ %i/a� 1, p(~x) = p0(ρ)︸ ︷︷ ︸
equil.

+ %∗ [ p̄1(ρ, θ)︸ ︷︷ ︸
PS var.

+ p̃1(ρ, θ, ζ)︸ ︷︷ ︸
NA + fluct.

]+O{%2
∗}, p̃1 = 0.

• Fourier Expansion. Due to toroidal symmetry, Fourier expand ζ dependence:

p̃1 =
∑

n p̂ne
−inζ, p̂n ≡

1

2π

∫ 2π

0

dζ einζ p̃1, p(~x) ≡
1

2π

∫ 2π

0

dζ p(~x) = p0(ρ) + %∗ p̄1(ρ, θ) +O{%2
∗}.

• Fluctuation Derivatives. Large perpendicular derivatives of fluctuations:

∇⊥ p̃1 ∼ (1/%∗) %∗ ∼ %0
∗, but ∇‖ p̃1 ∼ %0

∗%∗ ∼ %∗; ⊥ derivatives of p0, p̄1 will be O{%0
∗, %∗}.

• Magnetic Field. Represent as average ~B0 ≡ ~∇×(ψt
~∇θ − ψp

~∇ζ) plus small

O{%∗} perturbations ~̃B due to 3-D NA and collective plasma fluctuations:

~B = ~B0(ρ, θ) + %∗ ( ~̃B‖ + ~̃B⊥) +O{%2
∗}, | ~B| ' B0(ρ, θ) + %∗ B̃‖ +O{%2

∗}.

• Electric Field. Represent as a sum of scalar and vector potentials:

~E = −~∇φ+ ~E
A

, ~E
A
≡ −

∂ ~A

∂t
, ~̄EA =

(
∂Ψ

∂t
+ ψ̇p

)
~∇ζ − ψ̇t

~∇θ ∼ O{%2
∗}.
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I. Average Moment Equations Over Fluctuations, Then FSA6,7,9

• First, use perturbation procedure outlined on preceding viewgraph.

• Next, ζ-average over fluctuations (overbar) and FSA (〈· · · 〉) density, energy

equations [V (ρ) ≡
∫ ρ

0 d
3x, V ′ ≡ dV (ρ)/dρ, ρ ≡

√
ψt/πB0 ] for each species s:

density
∂n0

∂t

∣∣∣∣
~x

+
1

V ′
∂

∂ρ
(V ′ Γ ) = 〈S̄n〉, Γ ≡ 〈 (n0

~̄V2 + ñ1
~̃V1) · ~∇ρ〉,

energy
3

2

∂p0

∂t

∣∣∣∣
~x

+
1

V ′
∂

∂ρ

[
V ′
〈(
~̄q2 +

5

2
( p0

~V 2 + p̃1
~̃V1 )

)
· ~∇ρ

〉]
= 〈Q̄∆〉 −

〈
~̄R1· ~̄V1 + ~̃R1· ~̃V1

〉
+

〈
~̄V2 ·~∇p0 + ~̃V1·~∇p̃1

〉
−
〈↔̄
π : ~∇ ~̄V1

〉
+ 〈S̄ε〉.

• Finally, similarly average the momentum (force balance) equation and deter-

mine its radial (~∇ρ ·) component and the flux surface average (FSA) of its

parallel ( ~B0 ·) and toroidal angular (~eζ · = R~̂eζ ·) components:

radial O{%0
∗} mn0

∂~V

∂t
= nq(~E+ ~V× ~B)− ~∇p− ~∇·↔π

∑
s

=⇒ ρm
∂~V

∂t
= ~J× ~B− ~∇P − ~∇·

↔
Π,

parallel O{%∗} mn0

∂〈 ~B0· ~̄V 〉
∂t

= n0q〈 ~B0· ~̄EA〉−〈 ~B0·~∇·
↔̄
π〉+ 〈 ~B0· ~̄R〉−mn0〈 ~B0 · ~̃V ·~∇ ~̃V 〉+ · · · ,

toroidal O{%2
∗}

∂

∂t

∣∣∣∣
~x
〈~eζ ·mn0

~̄V 〉= q Γ − 〈~eζ · ~∇ ·
↔̄
π〉 − 〈~∇·mn (~eζ · ~̃V ) ~̃V 〉+ · · · .
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II. Order %0
∗, %

1
∗, %

2
∗ Force Balances And Flows Are Different

• %0
∗. Zeroth order fluid moment equations yield ideal MHD model.

• IIA. Compressional Alfvén waves ⊥ to ~B0 enforce ~J0× ~B0 = ~∇P0 plus Ohm’s

law ~E0+ ~V× ~B0 = ( ~J0× ~B0− ~∇pe)/nee = − ~∇pi/nee yields radial force balance:

0 = ~eρ · [niqi(~E + ~V× ~B)− ~∇pi] =⇒ Ωt ≡ ~V · ~∇ζ = −
(
dΦ

dψp

+
1

niqi

dpi

dψp

− q ~V · ~∇θ
)

=⇒ Vt '
Eρ

Bp

−
1

niqi

dpi

dρ
+
Bt

Bp

Vp , relation between toroidal, poloidal flows and Eρ, dpi/dρ.

• Maxwellianization of electron, ion distributions on their collision times of

1/νe, 1/νi cause n, T to be constant over collision lengths λe, λi and hence

on flux surfaces, and flows ~V become physically meaningful.

• %1
∗. First order flows are on magnetic flux surfaces (θ, ζ or ∧, ‖ directions):

~V 1 ≡ ~eθ (~V ·~∇θ)︸ ︷︷ ︸
poloidal

+~eζ (~V ·~∇ζ)︸ ︷︷ ︸
toroidal

= V‖ ~B0/B0︸ ︷︷ ︸
parallel

+ ~V∧︸︷︷︸
cross

, ~V s∧ ≡
~B0×~∇ψp
B2

0

(
dφ

dψp

+
1

ns0qs

dps

dψp

)
︸ ︷︷ ︸

~E× ~B and diamagnetic

.

• %2
∗. Radial flows ⊥ to flux surfaces are second order: ~V 2 · ~∇ψp 6= 0

— to calculate, need to determine flows in surface first, as in stellarators.8
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IIB. Electron Parallel Force Balance Yields FSA Parallel Ohm’s Law

• For times t > 1/νe ∼ 0.2 ms, FSA of equilibrium parallel force balance becomes

0 = −nee〈 ~B·~E
A
〉 − 〈 ~B·~∇·↔πe〉+ 〈 ~B·~Re〉+ 〈 ~B·~Spe〉 −mene0〈 ~B· ~̃Ve·~∇ ~̃Ve 〉 − ne0e〈 ~B· ~̃Ve× ~̃B⊥〉.

• Using the collisional friction relation ~B0· ~̄Re = − ~̄B0·~Ri ' ne0 e ~B0 · ~J/σ‖ and

neoclassical closure 〈 ~B0·~∇·
↔̄
πe‖〉 ' mene0〈B2

0〉(µe00Ueθ + µe01Qeθ), this

equation yields an extended neoclassical-based parallel Ohm’s law:10

〈 ~B0 · ~̄EA〉︸ ︷︷ ︸
ĒA
‖ field

= ηnc
‖ 〈 ~B0· ~J〉︸ ︷︷ ︸
‖ current

−
1

σ‖
[ 〈 ~B0· ~Jbs〉︸ ︷︷ ︸
bootstrap

+ 〈 ~B0· ~JCD〉︸ ︷︷ ︸
current drive

+ 〈 ~B0· ~Jdyn〉︸ ︷︷ ︸
dynamo

], ηnc
‖ '

1

σ‖

(
1 +

σ‖

σ⊥

µe00

νe

)
.

• ‖ currents are driven by dP0/dψp, ‖ e momentum sources and fluctuations:

〈 ~B0 · ~Jbs〉 ' −
σ‖

σ⊥

µe00

νe

(
I
dP0

dψp
− ne0eUiθ〈B2

0〉
)

, bootstrap current,

〈 ~B0 · ~JCD〉 ≡ −
σ‖

ne0e
〈 ~B0 ·

(
~̄Spe −me

~̄VeS̄ne

)
〉, non-inductive current drive,

〈 ~B0 · ~Jdyn〉 =
σ‖

ne0e
〈 ~B0 ·

(
mene0 ~̃Ve·~∇ ~̃Ve + ~∇·↔πe∧

)
〉︸ ︷︷ ︸

‖ Reynolds stress

+ σ‖ 〈 ~B0 · ~̃Ve× ~̃B⊥ 〉︸ ︷︷ ︸
‖ Maxwell stress

, dynamo.

10For illustrative purposes the equations here are simplified versions where the effects of the poloidal electron heat flow Qeθ have been neglected.
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IIB. Parallel Current Properties Can Also Be Obtained

• Adding first order flows, one obtains the usual sum of the parallel and diamag-

netic current densities:
~J ≡

∑
s

ns0 qs ~̄Vs1 ≡ ~J‖ + ~J∧ = J‖
~B0

B0

+
~B0×~∇P0(ψp)

B2
0

.

• Summing the poloidal flow components Usθ(ψp) or using the fact that the

current density is also incompressible (~∇ · ~J = 0) yields

KJ(ψp) ≡
~J · ~∇θ
~B0 · ~∇θ

=
J‖

B0

+
I

B2
0

dP0

dψp

.

• The constant KJ is determined by multiplying this equation by B2
0 and FSA:

KJ =
〈B0 J‖〉
〈B2

0〉
+

I

〈B2
0〉
dP0

dψp

.

• Using this result in the equation for KJ(ψp) above yields

B0 J‖ =
〈B0 J‖〉B2

0

〈B2
0〉︸ ︷︷ ︸

FSA ‖ current

− I
dP0

dψp

(
1−

B2
0

〈B2
0〉

)
︸ ︷︷ ︸

Pfirsch-Schlüter current

.

• From Ampere’s law [µ0
~J = ~∇× ~B = ~∇×(~∇× ~A)], the FSA parallel current is

µ0〈B0J‖〉 = I〈R−2〉∆+ψp, ∆+ψp ≡
I

〈R−2〉V ′
∂

∂ρ

[〈
|~∇ρ|2

R2

〉
V ′

I

∂ψp

∂ρ

]
'

1

r

∂

∂r

(
r
∂ψp

∂r

)
.
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IIB. Poloidal Flow Is Obtained From Plasma ‖ Force Balance

• Summing the parallel force balances over species yields (for S̄n = 0)

mini0
∂〈B0Vi‖〉

∂t
' −〈 ~B0·~∇·

↔̄
πi〉 −min0〈 ~B0 · ~̃Vi ·~∇ ~̃Vi 〉+ 〈 ~B0 · ~̃J∧× ~̃B⊥〉+ 〈 ~B0 ·

∑
s
~̄Sps〉.

• The poloidal flow is determined mainly by the parallel ion viscous force

〈 ~B0·~∇·
↔
πi‖〉 ' mini0

[
µi00Uiθ + µi01

−2

5niTi
Qiθ + · · ·

]
〈B2〉, µi00, µi01 ∼

√
ε νi.

• For t > 1/νi ∼ 34 ms, poloidal flow obtained from NCLASS11 or 〈 ~B·~∇·↔πi‖〉 ' 0 is

U0
iθ(ψp) ≡

~V ·~∇θ
~B·~∇θ

' −
µi01

µi00

−2

5niTi
Qiθ '

cp I

qi〈B2〉
dTi0

dψp

=⇒ Vp '
1.17

qiB

dTi0

dρ
+O{%2

∗}.

• Including all the drives in the parallel plasma force balance above yields7

Uiθ(ψp) ' U0
iθ(ψp)︸ ︷︷ ︸

neoclassical

−
〈 ~B0 · (mini0 ~̃Vi ·~∇ ~̃Vi + ~∇·↔πi∧) 〉

mini0µi00〈B2
0〉︸ ︷︷ ︸

‖ Reynolds stress

+
〈 ~B0 · ~̃J∧× ~̃B⊥〉+ 〈 ~B0 ·

∑
s
~̄Sps〉

mini0µi00〈B2
0〉︸ ︷︷ ︸

‖ Maxwell stress + flow sources

.

• Given the poloidal flow (Ω∗p ≡ I Uiθ/R2), relation of toroidal flow to Eρ is:

Ωt ≡ ~V ·~∇ζ = −
(
dΦ

dψp

+
1

niqi

dpi

dψp

)
+ Ω∗p =⇒ Vt '

Er

Bp

−
1

niqiBp

dpi

dρ
+

1.17

qiBp

dTi

dρ
.

11W.A. Houlberg, K.C. Shaing, S.P. Hirshman, and M.C. Zarnstorff, “Bootstrap current and neoclassical transport in tokamaks of arbitrary collisionality
and aspect ratio,” Phys. Plasmas 4, 3230 (1997).
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IIC. Magnetic Flux Transients Are Important At O{%2
∗}

• Poloidal, toroidal magnetic fluxes ψp, ψt evolve during start-up, addition of

current-drives, and approach to steady state on current diffusion times.

• These “slow,” O{%2
∗} effects have been negligible in the preceding O{%0

∗, %
1
∗}

analyses, but need to be included in comprehensive transport equations.

• Using ~B = ~∇× ~A with ~A = ψt
~∇θ − ψp

~∇ζ in Faraday’s law in the form

~∇×(∂ ~A/∂t|~x − ~∇φ+ ~E
A

) = ~0 and FSA of R−2 times these equations yields7

toroidal flux
∂ψt

∂t

∣∣∣∣
~x

= − ūG
∂ψt

∂ρ
≡ ψ̇t, ūG ≡ 〈~uG ·~∇ρ〉 =

〈 ~Bp ·~E
A
〉

ψ′pI〈R−2〉
, “grid speed,”

poloidal flux
∂ψp

∂t

∣∣∣∣
~x

=
〈 ~B0 · ~̄EA〉
I〈R−2〉

−
∂Ψ

∂t
− ūG

∂ψp

∂ρ
, 2π

∂Ψ

∂t
≡ V ζ

loop(t), OH solenoid.

• Using ‖ Ohm’s law from p 21 or 32 for 〈 ~B0 ·~E
A
〉 and µ0〈B0J‖〉 = I〈R−2〉∆+ψp

yields a diffusion equation for poloidal flux ψp on a toroidal ψt flux surface:7

ψ̇p ≡
∂ψp

∂t

∣∣∣∣
ψt

= Dη ∆+ψp − Sψ, Dη ≡
ηnc
‖

µ0

, Sψ =
∂Ψ

∂t
+

1/σ‖

I〈R−2〉
[〈 ~B0 · ( ~Jbs + ~JCD + ~Jdyn)〉].
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IIC. Plasma Transport Is Relative To Poloidal Flux Surfaces

• Tokamak plasma properties are determined in terms of poloidal magnetic flux ψp:

Grad-Shafranov (ideal MHD equilibrium) equation determines ψp(~x) given P (ψp) and I(ψp);

classical and neoclassical transport are determined12 across poloidal flux surfaces ψp;

drift-kinetic and gyrokinetic equations use poloidal flux variables and have f0 = fiM(ψp)
— so canonical toroidal angular momentum emerges as a natural constant of motion.

• Thus, one needs12 to transform the fluid moment equations from determining

density, momentum, energy at a laboratory position ~x to determining them on

a poloidal flux surface ψp — i.e., ∂n/∂t|~x =⇒ ∂n/∂t|ψp etc.

• However, for low collisionality tokamak plasmas this transformation must first

be made in the drift-kinetic (or gyrokinetic) equation, which yields13 the

magnetic-field-diffusion-modified drift-kinetic equation (MDKE → CEKE):

∂f̄

∂t

∣∣∣∣∣
ψp

+ (~v‖ + ~vd) · ~∇f̄ + ε̇gc

∂f̄

∂εgc

= C̄{f̄}+D{f̄}, in which ~v‖ ≡ v‖ ~B/B.

• Here, D{f̄} ∼ Dη f̄/a
2 ∼ O{%2

∗} is a second order paleoclassical radial trans-

port operator12 that results from transformation of DKE equation from ~x to ψp.

12R.D. Hazeltine, F.L. Hinton and M.N. Rosenbluth, “Plasma transport in a torus of arbitrary aspect ratio,” Phys. Fluids 16, 1645 (1973).
13J.D. Callen, Phys. Plasmas 14, 040701 (2007); 14, 104702 (2007); 15, 014702 (2008); 12, 092512 (2005) — see www.cae.wisc.edu/∼callen/paleo.
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IIC. Transform Density Equation With These O{%2
∗} Effects

• FSA paleoclassical transport operator D ∼ O{%2
∗} operating on density is

〈D{n0}〉 ≡ − ρ̇ψp

∂n0

∂ρ︸ ︷︷ ︸
ψp motion

+ 〈~∇·n0~uG〉︸ ︷︷ ︸
ψt motion

+
1

V ′
∂2

∂ρ2
(V ′D̄ηn0)︸ ︷︷ ︸

transport

,

ρ̇ψp
≡
ψ̇p

ψ′p
, D̄η ≡

Dη

ā2
,

1

ā2
≡

1

〈R−2〉

〈
|~∇ρ|2

R2

〉
>∼

1

a2
, 〈~∇· ~uG〉 =

1

V ′
∂V ′

∂t

∣∣∣∣
ρ

.

• Including transformation effects, FSA density equation can be written as7

1

V ′
∂

∂t

∣∣∣∣
ψp

(V ′n0) + ρ̇ψp

∂n0

∂ρ︸ ︷︷ ︸
ψp motion

+
1

V ′
∂

∂ρ
(V ′ Γ)︸ ︷︷ ︸

transport

= 〈S̄n〉︸ ︷︷ ︸
sources

, V ′n0 is # particles between
ρ and ρ+ dρ surfaces, an
adiabatic plasma property.

• The total O{%2
∗} particle flux for each species is:

Γ ≡ 〈~Γ·~∇ρ〉 = Γa + Γna + Γapc = 〈 [ n0( ~̄V2 − ~uG)︸ ︷︷ ︸
collisional

+ ñ1
~̃V1︸ ︷︷ ︸

fluctuations

] · ~∇ρ 〉 +
∂

∂ρ
(V ′D̄ηn0)︸ ︷︷ ︸

paleoclassical

.

• Note that toroidal flux is basis for radial coordinate ρ ≡
√
ψt/πBt0 (units

of m) but fluid moments n, T, ~V are determined on poloidal flux surfaces ψp.
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IIC. Toroidal Torques From Force Balance Yield Radial Flows

• A key vector identity for determining radial flows is (~eζ ≡ R2~∇ζ = R~̂eζ)

~eζ · ~V× ~B0 = − ~V ·~eζ× ~B0 = ~V ·~∇ψp — toroidal component of ~V× ~B0 gives radial flow.

• Thus, the ~eζ component of the force balance shows the particle flux is induced

by toroidal torques Tζ ≡ ~eζ·~F on the plasma species by forces ~F j:

~eζ · (nq~V× ~B0 +
∑

j
~F j) = 0 =⇒ qψ′p Γ = −

∑
j

~eζ·~F j = −
∑
j

Tζj, ψ′p ≡
dψp

dρ
.

• Thus, taking toroidal angular (~eζ ·) component of the species force balance,

averaging over fluctuations and then flux surface averaging yields particle flux:

〈n0
~̄V2·~∇ψp〉+ 〈ñ1

~̃V1·~∇ψp〉 average plus fluctuation-induced radial particle flux Γ,

=
1

q

[
−〈~eζ · ~̄R〉+ 〈~eζ · ~∇ ·

↔̄
π〉
]
− n0〈~eζ · ~̄EA〉 collision-induced particle fluxes,

−〈~eζ · ñ ~̃E〉− 〈~eζ ·n0
~̃V1× ~̃B〉−

1

q
〈~eζ· ~̄Sp〉+

1

q

(
∂

∂t

∣∣∣∣
~x

[mn0 〈~eζ · ~̄V1〉] + 〈~∇·mn (~eζ· ~̃V1) ~̃V1〉
)

, fluct., inertia.

• After transforming this equation from ~x to ψp using 〈~eζ · D{mn0
~̄V1}〉, it can

be solved for the total species particle flux Γ, which has many contributions.
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Particle Flux Has Many Contributions I: 8 Ambipolar

• The radial particle flux can be written in terms of its various components:7

Γ ≡ 〈~Γ · ~∇ρ〉 ≡ 〈ns0( ~̄V2− ~uG) ·~∇ρ〉+ 〈ñ1
~̃V1·~∇ρ〉− (1/V ′)(∂/∂ρ) [V ′ D̄η ns0] ≡ Γa+ Γna+ Γapc,

Γ = Γcl + ΓPS + Γbp + Γpc + ΓẼ + ΓCD + Γdyn + ΓEA︸ ︷︷ ︸
Γa + Γapc, 8 ambipolar (superscript a)

+ ΓNA
π‖ + Γπ⊥ + Γpol + ΓRey + ΓMax + ΓJxB + Γψ̇p

+ ΓS︸ ︷︷ ︸
Γna, 8 non-ambipolar (superscript na)

.

• Intrinsically ambipolar fluxes14 (ψ′p ≡ dψp/dρ ' BpRa):

Γcl =

〈
~B0×~∇ρ
B2

0

·
~̄Rs⊥

qs

〉
= −

ne0

σ⊥

〈
|~∇ρ|2

B2
0

〉
dP0

dρ
, Dcl '

ne0(Te + Ti)

σ⊥〈B2
0〉

' νe%2
e, classical,

ΓPS = −
ne0I

2

σ‖ψ′2p

〈
1

B2
0

(
1−

B2
0

〈B2
0〉

)2〉
dP0

dρ
, DPS '

2σ⊥

σ‖
q2Dcl ∼ q2Dcl, Pfirsch-Schlüter,

Γbp =
I

eψ′p〈B2
0〉
〈 ~B0 · ~∇ ·

↔̄
πe‖〉, Dbp ' µe%2

ep ∼
q2

ε3/2
Dcl, banana-plateau,

Γpc = −
(
D̄η

dne0

dρ
+ ne0Vpc

)
, Vpc ≡

1

V ′
∂

∂ρ
(V ′D̄η), Dη ≡

ηnc
‖

µ0

∼
Dcl

βe
, paleoclassical,

ΓẼ = 〈ñ ~̃VE ·~∇ρ〉 − (I/ψ′p) 〈 ~B0 · ñ ~̃E /B2
0〉, fluctuation-induced density flux,

ΓCD + Γdyn = [(ne0I)/(σ‖ψ
′
p〈B

2
0〉)]〈 ~B0 · ( ~JCD + ~Jdyn)〉, current drive, dynamo effects,

ΓEA = −ne0
[
〈~eζ · ~̄EA〉(1− I2〈1/R2〉/〈B2

0〉)− I〈 ~Bp· ~̄EA〉/〈B2
0〉
]
/ψ′p, ~̄EA× ~Bp/B

2
0 pinch.

14K.C. Shaing, S.P. Hirshman, and J.D. Callen, Phys. Fluids 29, 521 (1986); K.C. Shaing, Phys. Fluids 29, 2231 (1986).
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Particle Flux Has Many Contributions II: 8 Non-ambipolar7

• Non-ambipolar fluxes (Γ’s here are multiplied by ψ′p ≡ dψp/dρ ' BpRa):

ΓNA
π‖ =

1

qs
〈~eζ·~∇·

↔̄
π

NA

s‖ 〉 '
mini0〈R2〉µi t

qi

(
δB̃eff

B0

)2

(Ωt − Ω∗), Ω∗'
cp+ct

qi

dTi

dψp

, NTV,

Γπ⊥ =
1

qs
〈~eζ·~∇·

↔̄
πs⊥〉 '

1

qi

〈
~eζ·~∇·(

↔̄
π

cl

i⊥+
↔̄
π

nc

i⊥+
↔̄
π

pc

i⊥)

〉
∼ −χt∇2Ωt, χt i ∼ (1+0.1q2)νi%

2
i +Dη,

Γpol =
1

qsV ′
∂

∂t

∣∣∣∣
ψp

(
V ′msns0〈~eζ· ~̄Vs〉

)
, ion polarization flow when (∂Ωt/∂t) 6= 0,

ΓRey =
1

qsV ′
∂

∂ρ
(V ′Πsρζ), Πsρζ ≡ msns0 〈(~∇ρ · ~̃Vs)( ~̃Vs · ~eζ)〉+〈~∇ρ ·

↔
πs∧ · ~eζ〉, Reynolds stress,

ΓMax = −〈~eζ · ñ1
~V 1× ~̃B〉 '

1

e
〈~eζ · ~̃J× ~̃B〉 =

1

eµ0

〈~eζ · ~̃B ·~∇ ~̃B 〉, Maxwell stress,

ΓJxB '
1

e
〈~eζ·δ ~J‖m/n×δ ~B⊥m/n〉 ∼ δ[ρ−ρm/n]

cAθ

e

ω mini0R

∆′ 2 + (ωτδ)2

δB2
ρm/n

B2
0

, FE-induced res. layer,

Γψ̇p
=
ρ̇ψp

qs

∂

∂ρ
(msns0 〈~eζ · ~̄Vs〉), ψp transients,

ΓsS = −
1

qs
〈~eζ · ~Sps〉, momentum sources (e.g., NBI, CD).
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IIC. Setting To Zero Radial Current Obtained By Summing

Particle Fluxes Over Species Yields Toroidal Torque Balance

• Sum radial species currents to obtain net radial plasma current:

〈 ~J · ~∇ρ〉 ≡
∑
s

qs

(
Γas + Γaspc + Γans

)
=
∑
s

qs Γans — sum of non-ambipolar currents.

• Charge continuity equation on a ψp surface is obtained by summing qs times

density equations over species is (ρ̇ψp = 0 and
∑

s qs〈S̄ns〉 = 0 for simplicity)

1

V ′
∂

∂t

∣∣∣∣
ψp

(V ′〈ρq〉) +
1

V ′
∂

∂ρ
(V ′〈 ~J · ~∇ρ〉) = 0.

• For quasineutrality at all t this charge continuity equation requires 〈 ~J · ~∇ρ〉 = 0.

• Setting 〈 ~J · ~∇ρ〉 to zero yields comprehensive toroidal torque balance equation7

for the total toroidal plasma angular momentum density Lt ≡ mini0 〈R2〉Ωt:

1

V ′
∂

∂t

∣∣∣∣
ψp

(V ′Lt)︸ ︷︷ ︸
inertia

' − 〈~eζ·~∇·
↔̄
π

NA

i‖ 〉︸ ︷︷ ︸
NTV from B̃‖

− 〈~eζ·~∇·
↔̄
πi⊥〉︸ ︷︷ ︸

cl, neo, paleo

−
1

V ′
∂

∂ρ
(V ′Πiρζ)︸ ︷︷ ︸

Reynolds stress

+ 〈~eζ· ~̃J× ~̃B〉︸ ︷︷ ︸
res.FE, Max

− ρ̇ψp

∂Lt

∂ρ︸ ︷︷ ︸
ψp motion

+ 〈~eζ ·
∑

s
~̄Sps〉︸ ︷︷ ︸

sources

.
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IIC. Toroidal Rotation Equation Includes Many Different Effects

• Equation for the toroidal angular momentum density Lt ≡ mini0 〈R2〉Ωt is:7

1

V ′
∂

∂t

∣∣∣∣
ψp

(V ′Lt)︸ ︷︷ ︸
inertia

' − 〈~eζ·~∇·
↔̄
π

NA

i‖ 〉︸ ︷︷ ︸
NTV from B̃‖

− 〈~eζ·~∇·
↔̄
πi⊥〉︸ ︷︷ ︸

cl, neo, paleo

−
1

V ′
∂

∂ρ
(V ′Πiρζ)︸ ︷︷ ︸

Reynolds stress

+ 〈~eζ· ~̃J× ~̃B〉︸ ︷︷ ︸
res.FE, Max

− ρ̇ψp

∂Lt

∂ρ︸ ︷︷ ︸
ψp motion

+ 〈~eζ ·
∑

s
~̄Sps〉︸ ︷︷ ︸

sources

.

• Neoclassical toroidal viscous (NTV) damping (to be discussed in next lecture)

by 3-D non-axisymmetric (NA) δ ~B fields drives Ωt→Ω∗ via

−〈~eζ ·~∇·
↔̄
π

NA

i‖ 〉 ' −mini0〈R2〉µi t

(
δB‖eff

B0

)2
(Ωt − Ω∗), Ω∗'

cp+ct

qi

dTi

dψp

, offset velocity.

Damping frequency µi t ∼ 1/ω2
E in low ν regime yields max NTV torque where |~E× ~B0| → 0.

• Collisional ⊥ viscous stresses are dominated by paleoclassical processes:

−〈~eζ·~∇·
↔̄
πi⊥〉 ' −

1

V ′
∂

∂ρ

[
V ′
(
D̄η

∂Lt

∂ρ
+ LtVpc

)]
, only significant for Te <∼ B

2/3
0 ā1/2 <∼ 5 keV.

• Microtubulence-induced ion Reynolds stresses cause radial transport of Lt:

Πiρζ ≡ mini0 〈(~∇ρ · ~̃Vi)( ~̃Vi ·~eζ)〉+ 〈~∇ρ ·↔πi∧·~eζ〉 ∼ − χt

∂Lt

∂ρ︸ ︷︷ ︸
diffusion

+ Lt Vpinch︸ ︷︷ ︸
pinch

+ ΠRS
iρζ︸︷︷︸

residual stress

,

which in the core of a tokamak usually balances momentum source 〈~eζ ·
∑

s
~̄Sps〉 from NBI.
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IIC. Toroidal Rotation Determines Radial Electric Field

Required For Net Ambipolar Radial Particle Flux

• The radial electric field determined from toroidal rotation Ωt ≡ Lt/(mini0〈R2〉) is:

Eρ ≡ − |~∇ρ |
dΦ0

dρ
' |~∇ρ |

(
Ωtψ

′
p +

1

ni0qi

dpi0

dρ
−
cp

qi

dTi0

dρ

)
, |~∇ρ | varies with θ.

• The resultant Eρ (or Ωt) causes the electron and ion non-ambipolar radial

particle fluxes to become equal (i.e., ambipolar):

Γnae (Eρ) = Zi Γ
na
i (Eρ) =⇒ 〈 ~J · ~∇ρ〉 = 0 =⇒ Lt (i.e., Ωt, or Eρ) equation.

• Thus, the net ambipolar particle flux is sum of Γa + Γapc and Γna(Eρ), which is

usually easiest to evaluate for electrons since 〈 ~J ·~∇ρ〉 ' Γnai (Eρ) ' 0, which is

usually called the “ion root:”

Γ ≡ Γnet
e ≡ Γae + Γaepc︸ ︷︷ ︸

intrinsically
ambipolar

+ Γnae (Eρ)︸ ︷︷ ︸
non-ambipolar
Eρ

=⇒ ambipolar

= Γnet
i .
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III. Resultant Transport Equations Can Now Be Specified

• Density (assuming for simplicity the particle source 〈S̄n〉 is ambipolar):

1

V ′
∂

∂t

∣∣∣∣
ψp

(V ′ne) + ρ̇ψp

∂ne

∂ρ
+

1

V ′
∂

∂ρ

[
V ′ Γnet

e (Eρ)
]

= 〈S̄n〉, here ne ≡ ne0, ρ̇ψp
≡
ψ̇p

ψ′p
,

Γ ≡ Γnet
e (Eρ) ≡ Γae + Γaepc + Γnae (Eρ) ' Γbp + Γpc︸ ︷︷ ︸

collision-induced

+ Γe Ẽ + ΓeRey(Eρ) + ΓeMax(Eρ)︸ ︷︷ ︸
fluctuations

' 〈ñe ~̃VẼ ·~∇ρ〉︸ ︷︷ ︸
micro-turbulence

+ Γbp − D̄η

∂ne

∂ρ
− neVpc︸ ︷︷ ︸

paleo diffusion & pinch

−
1

ψ′p
〈~eζ·ne ~̃Ve× ~̃B 〉︸ ︷︷ ︸

e Maxwell stress

.

• For toroidal rotation Ωt ≡ Lt/(mini0〈R2〉)

see p 41, 42 for Lt ≡ mini0〈R2〉Ωt equation (and preceding viewgraph for Eρ).

• Collisional entropy (s) evolution equations for electrons and ions have forms

of heat fluxes similar to particle fluxes, but without the ambipolar constraint

— see reference 8 cited on p 27.
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Tokamak Transport Equations Include Many Effects

•With sources of n, Lt ≡ ρm〈R2〉Ωt and ps, transport equations are9

density
1

V ′
∂

∂t

∣∣∣∣
ψp

neV
′ + ρ̇ψp

∂ne

∂ρ
+

1

V ′
∂

∂ρ
(V ′Γ) = 〈Sn〉,

tor. mom.
1

V ′
∂

∂t

∣∣∣∣
ψp

LtV
′ + ρ̇ψp

∂Lt

∂ρ
+

1

V ′
∂

∂ρ
(V ′Πρζ) = 〈~eζ ·

(
~J× ~B − ~∇·

↔
Π +

∑
s
~Sps

)
〉,

energy
3

2
ps
∂

∂t

∣∣∣∣
ψp

ln psV
′ 5/3 +

3

2
ρ̇ψp

∂ps

∂ρ
+

1

V ′
∂

∂ρ
(V ′Υs) + 〈~∇· ~q pc

s∗ 〉 = Qsnet.

• In these comprehensive tokamak plasma transport equations:

V ′ ≡ dV/dρ (m2) is the radial derivative of the volume V (ρ) (m3) of the ρ (m) surface and

V ′ne ≡ dN/dρ and V ′Lt are # of particles N and plasma toroidal angular momentum
between ρ and ρ+dρ flux surfaces, which are both adiabatic (isentropic) properties;

similarly, ln psV
′ 5/3 is collisional entropy density between the ρ and ρ+dρ flux surfaces;

further, ρ̇ψp
≡ − ψ̇p/ψ

′
p takes account of ψp surface motion relative to the ψt-based ρ;

↔
Πρζ ≡

∑
s

↔
πsρζ,

↔
πsρζ = msns 〈 ~∇ρ · ~̃Vs ~̃Vs ·~eζ〉+ 〈~∇ρ ·↔π∧s·~eζ〉 is µturbulence-induced Reynolds stress;

and 〈~∇· ~qpc
s∗〉 = −

Ms

V ′
∂2

∂ρ2

(
V ′Dη

3

2
ps

)
+

3

2
ρ̇ψ∗

∂ps

∂ρ
is due to13 paleoclassical helical electron heat transport.

Some 〈~eζ · ~J× ~B〉 and 〈~eζ·~∇·
↔
Π〉 closures for small 3-D fields have been obtained and validated.15

15J.D. Callen, “Effects of 3D magnetic perturbations on toroidal plasmas,” Nucl. Fusion 51, 094026 (2011).
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This Approach Is New And Has Some Consequences

• Key differences from usual approaches for plasma transport equations are:

first solve for electrons & ion flows within flux surfaces → ‖ Ohm’s law & poloidal ion flow;

derivation of non-ambipolar density fluxes and toroidal rotation (→ Eρ) are naturally joined;

comprehensive transport equations are obtained for Ωt (→ Eρ) and ψp, as well as usual ne, ps;

effects of micro-turbulence on ‖ Ohm’s law (p 32), poloidal ion flow (p 34), particle fluxes
(p 39, 40), momentum transport (p 41, 42) and Eρ (p 43, 44) are all included self-consistently;

fluctuation-induced density flux is obtained from electron 〈ñe ~̃VẼ ·~∇ρ〉 plus Rey., Max. stresses;

source effects (e.g., NBI momentum input and ~JCD) are included self-consistently;

poloidal field transients (ψ̇p 6= 0) and current diffusion time scale effects are included; and

net transport equations follow naturally from extended two-fluid moment equations and
hence are consistent with M3D, NIMROD, JOREK etc. extended MHD code frameworks.

• Some new attributes and elements of this approach are:

radial electric field is determined self-consistently and enforces ambipolar density transport;

micro-turbulence should be determined from Chapman-Enskog kinetic equation (CEKE) —
so closures and transport they induce are consistent with these FSA transport equations;

paleoclassical n, Ωt (→ Eρ), ps diffusion and pinch effects are included naturally; and

poloidal flux transients (ψ̇p 6= 0) induce radial motion of n, Ωt (→ Eρ), ps.
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SUMMARY: Status, Issues And Research Topics

• Extended MHD: Collisional and closure moments needed to close
magnetized fluid equations were identified, and model discussed.

• Tokamak Extended MHD: The tokamak axisymmetric ideal MHD
equilibrium was discussed. Also, viscous forces and their effects
on the parallel Ohm’s law and poloidal flows in a tokamak were
discussed. Finally, the fluid moment equations were transformed
to magnetic flux coordinates, flux surface averaged and used to
obtain the tokamak plasma transport equations for ne, Ωt and ps.

• Status: Extended MHD and tokamak transport equations are still
being developed for applications where new closures are required.

• Possible research topics in these areas are development of

procedures and algorithms for obtaining “local” collisional and closure
moments for extended MHD when only flux surface averages are available,

procedures and algorithms for solving the CEKE for Fs in the presence of
microturbulence that yield needed closures for new transport equations,

and useful procedures, closures and algorithms in the vicinity of X points
near and outside a divertor magnetic separatrix.
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Subjects To Be Covered In Final Lecture 4

• Tokamak plasma transport modeling (Chapter 5):

there are many effects in tokamak plasma transport equations — ψp transients,

collision- and microturbulence-induced transport, sources and sinks,

plus toroidal ~J× ~B and viscous forces ~∇ ·
↔
Π caused by small 3-D fields,

many recently developed examples of which will be discussed.

• New strategy for achieving comprehensive “grand unified toka-
mak simulations” (GUTS) that can provide the “predictive capa-
bility” needed for behavior of plasmas in ITER (Chapter 6):

1) use extended MHD to check macrostability and determine ~B field with
plasma responses on collisionless through (via closures) collisional time scales,

2) solve relevant drift-kinetic/gyrokinetic Chapman-Enskog kinetic equation
for Fs in this ~B field, for both collisional and microinstability processes,

3) obtain collisional and closure moments needed for extended MHD
and the resultant comprehensive tokamak plasma transport equations,

4) solve tokamak plasma transport equations simultaneously for ne, Ωt (Eρ), ps,

5) and then iterate back through steps 1) to 4).
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