Overview

- Digital Technology
- Information Sources
- Course Description
- Course Conduct
- Course Outline
- Course Role

Complexity Growth

Source (Copp, Int. AOC EW Conf., 2002)

Information Sources

- Course homepage
 - http://www.engr.wisc.edu/ece/courses/ece352.html
 - http://courses.engr.wisc.edu/ecow/get/ece/352/1saluja/
 - Important source for new and updated information
- E-mail – important critical information
 - Lectures and course in general – Saluja and Ramanathan
 - Mentor and Project - TAs
- Course Description
- Course Conduct
- Course Outline

Reliability and Cost

- Reliability
 - VLSI circuits are more reliable than ever—How do we continue on this path?
- Cost
 - Products are more affordable as cost of digital products is dropping
 - 2 MB flash memory ($2800.00, 1988)
 - 256 MB flash memory ($55.00, 2003)
 - Must continue to contain the cost

Digital Technology

Complexity Growth

Source (Copp, Int. AOC EW Conf., 2002)
Course Description

- **Times & Places**
 - Shared discussions
 - Shared office hours
 - Courses will be almost in sync.

- **Instructors**
 - Professors Saluja and Ramanathan

- **TAs:**
 - Robert Kenney
 - Gregg Albin

- **Prerequisite**
 - Mathematical maturity and just need to know a bit of programming in procedural languages

Course Description (Continued)

- **Textbook**
 - must be 2nd Edition or 2nd Edition Updated

- **Computer Usage**
 - Unix workstations at CAE
 - CAE offers Unix tutorials during the first four weeks

- **Homework**
 - Not submitted, not graded (but essential for quiz/final exam prep!)

- **Grading**
 - 4 quizzes: 60%;
 - 2 Projects 20%;
 - Final 20%

Course Conduct

- **Critical info for doing well in course – Be familiar with it!**

- **Lectures**
 - Don’t depend on what is on website – may be incomplete

- **Computer-Aided Engineering (CAE)**
 - Unix introductory tutorials from CAE
 - Mandatory Tutorials from 352 TAs – sign-up

- **Project**
 - Individual and teams of two
 - Project Help Sessions – sign-up
 - Submitted and graded

Course Conduct (Continued)

- **Quizzes and Final Exam**
 - Note rules – makeup permission will not be given freely!
 - Note final date – attendance on that date required!

- **Discussions**
 - Attend review sessions held weekly and before the quizzes

- **Consultation**
 - Office Hours
 - Use TAs
 - All TA office hours in 3610 Engineering Hall

Course Conduct (Continued)

- **E-mail**
 - Technical questions regarding Mentor and projects, e-mail 352@cae.wisc.edu
 - Administrative questions or other questions, e-mail Saluja.

- **Resources for Special Help**
 - McBurney Center – alternative testing or other arrangements
 - Course problem consultation: Hu/Saluja (your instructor)
 - Broader problem consultation: advisor (Saluja) or counselor

- **Academic Misconduct**
 - We really don’t expect it to happen. Please don’t disappoint us.

Course Outline

- Some additional lectures may be cancelled
 - Our scheduled lectures are over the required 4x50 minutes for the semester

- Notes contain important information
 - Reading assignments and homework timing
 - Tutorial weeks
 - Project help sessions weeks
 - Quiz times and final exam time!
Course Outline (Continued)
• Major topics in Course
 – Information representation and manipulation
 – Logic elements and Boolean algebra
 – Combinational Logic
 – Arithmetic Logic
 – Sequential Logic
 – Memory and Programmable Logic
 – Register Transfers
 – Control
 – A simple computer organization, design and operation

Course Role
• General – Deals with the design of digital systems and computer hardware
• Links to Other Courses
 § Comp Sci Students – Connects to Comp Sci 354 and can be followed by Comp Sci 552
 § CMPE Students – Connects to ECE 354 and is followed by many courses including required ECE 351, ECE 353, ECE 551 and ECE 552 – The most important fundamental course in hardware in your program!
 § EE Students – One of the several fundamental courses in your program – required for some labs and elective courses

Motivation
• See the “Course Role”
• Help in completing your degree requirement
• Fundamental to learning about computer hardware function at most commonly used level of abstraction