Combinational Logic Design

Originals by: Charles R. Kime and Tom Kaminsksi
Modified for course use by: Kewal K. Saluja and Yu Hen Hu
© 2001 Prentice Hall, Inc

Design Hierarchy
- Combinatorial Circuits
- A combinatorial logic circuit has:
 - A set of n Boolean inputs,
 - A set of m Boolean outputs, and
 - n switching functions mapping the 2^n input combinations to a
 output such that the current output depends only on the
 current inputs.
- A block diagram:

Hierarchical Design
- The function mapping inputs to outputs may be very complex
 - To control complexity, we decompose the function into smaller
 pieces called blocks
 - The blocks are subdivided into finer blocks
 - The "leaves" in the hierarchy are called primitive blocks
- Example: 16 input parity tree
 - Top Level: 16 inputs, one output
 - 2nd Level: Five 4-bit parity trees in two levels
 - 3rd Level: Three 2-bit exclusive-OR functions
 - Primitive level: Four 2-input NANDs
 - The design requires 5 X 3 X 4 = 60 two-input NAND gates

Reusable Functions and Design
- Whenever possible, we try to decompose a complex
design into common, reusable function blocks
- These blocks are tested and well documented
- Computer-aided design (CAD) tools might include
 them in libraries
- Computer-aided manufacturing (CAM) tools might
 know how to manufacture and test them
- Other tools:
 - Schematic Capture
 - Logic Simulators
 - Timing Verifiers
 - Hardware Description Languages (HDL)

Top-Down verses Bottom-Up
- A Top-Down design proceeds from an abstract, high
 level specification to a more and more detailed design
 by decomposition and successive refinement
- A Bottom-Up design starts with detailed primitive
 elements and combines them into larger and larger and
 more complex functions
- Designs usually proceed from both directions
 simultaneously
 - Top-Down design answers: What are we building?
 - Bottom-Up design answers: How do we build it?
 - Top-Down controls complexity while Bottom-Up
 "sweats" the details

Analysis Procedure
- Switching Functions from Logic Diagrams
 - Given a logic diagram, the analysis process provides a set
 of Boolean equations, a truth table, or a verbal
 explanation of circuit behavior.
 - Procedure:
 1. Determine that the circuit is combinational (no feedback loops),
 then:
 2. Identify and label all gate outputs that are a function of the input
 variables. Obtain the Boolean functions for these labeled gate
 outputs.
 3. Identify and label all gate outputs that are a function of inputs or
 previously labeled gates. Obtain Boolean functions for them.
 4. Repeat Step 2 until all outputs are completed.
 5. Back substitute until all functions are specified in terms of inputs
 only.
Analysis Example

- **Step 2:** Label all outputs of gates near inputs.
- **Write Boolean equations for them:**
 - \(T_1 = \overline{B} + C \)
 - \(T_2 = B \overline{E} \)

Analysis (Continued)

- **Step 3:** Identify and label all gate outputs that are a function of inputs or previously labeled gates. Obtain Boolean functions for them.
 - \(T_3 = D + T_2 \)
 - **Step 4:** Repeat Step 3 until all done
 - \(T_4 = T_1 \cdot T_3 \)
 - \(F = A + T_4 \)

Analysis Example: Code Converter

- **Step 2:** Label gates derived from inputs and develop Boolean functions.
- **Step 3:** Label the next stage of gates and develop Boolean functions.

Code Converter Analysis (Cont.)

- The process terminates with all gate outputs defined. Proceeding with Step 4, substituting.

Truth Tables from Logic Diagrams

1. Determine the number of input variables, \(n \). There will be \(2^n \) input vectors from zero to \((2^n) - 1 \). Enter them in the table.
2. Label the outputs of selected gates with symbols and enter a column for each one in the table.
3. Obtain the truth table for the outputs of those gates that are a function of only input variables.
4. Proceed to fill in the outputs of all gates that are derived from inputs and previously calculated terms.
Truth Tables from Logic Diagrams

Procedure:
- Determine the number of input variables, n. There will be 2^n input vectors from zero to $2^n - 1$. Enter them in the table.
- Label the outputs of selected gates with symbols and enter a column for each one in the table.
- Obtain the truth table for the outputs of those gates that are a function of only input variables.
- Proceed to fill in the outputs of all gates that are derived from inputs and previously calculated terms.

Example: Find the function table for the code converter.

<table>
<thead>
<tr>
<th>ABCD</th>
<th>F0</th>
<th>F1</th>
<th>F2</th>
<th>w</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0010</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0011</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0100</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0101</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0110</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1001</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1011</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1101</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complete Entries

Finally we can fill in w to complete the table:

<table>
<thead>
<tr>
<th>ABCD</th>
<th>F0</th>
<th>F1</th>
<th>F2</th>
<th>w</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0010</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0011</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0100</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0101</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0110</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1001</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1011</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1101</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What Does the Circuit Do?

- By inspection, the output variable vector (w,x,y,z) is just the input variable vector (A,B,C,D) plus three.
- The function(s) $F(A,B,C,D) = (w,x,y,z)$ are:
 - "ADD THREE TO THE INPUT VECTOR"
 - Function F_1 has the meaning:
 - "ADD ONE TO THE UPPER TWO BITS"
 - Similarly, function F_2 has the meaning:
 - "ADD ONE TO THE UPPER BIT"
- Generally, it is not this obvious to figure out what the functions mean!

Final Note (and warning)

- The use of "Don't Cares" in the original specification can cloud the analysis.
 - Note that the functions for the "w" bit differ from the implementation in Ex. 3-2 of the book.
 - The book used "Don't Cares" to simplify the logic.
- This example here did not.

[Diagram of K-maps for w]
Logic Design: Functional Blocks

- Analysis: From a design to a specification of the behavior
 - Logic diagram to equations
 - Function table
 - "Word description" of circuit operation
- Design and Synthesis: From a specification to design implementation
 - Define the problem
 - Generate function table or equations
 - Minimize the Boolean function
 - Implement the circuit

Combinatorial Logic Implementation

- A combinatorial logic circuit has:
 - A set of \(n \) Boolean inputs,
 - A set of \(m \) Boolean outputs, and
 - A function mapping inputs to outputs.
- We think of the function as \(n \) separate Boolean functions of \(m \) inputs.
- Procedure:
 - Treat each output as a separate function
 - Minimize the equations for each function
 - Implement each function independently
 - Sometimes an implementation can share product or sum logic terms to arrive at a lower literal cost solution.

Design Procedure

- First, start with the specification of the circuit to be designed.
 - Note: this can sometimes require a lot of work to complete the specification process, especially if it is poorly specified initially.
- Second, follow these steps: We will study the design of a code converter to see these steps.
 - Identify the inputs and outputs
 - Derive truth table
 - Obtain simplified Boolean equations
 - Draw the logic diagram
 - Check your work to verify correctness.

Code Converter Design Example

- A code converter transforms one internal representation of data to another
- We will start with a table of the desired conversion and minimize the resulting multiple output Boolean function.
- Sometimes terms can be shared to minimize the implementation cost.
- The Problem:
 - Design a BCD to Excess-3 code converter
 - Specification:
 - BCD code -- 4-bit patterns "0000" to "1001" for digits 0 to 9 base 10
 - Excess-3 -- BCD code plus binary "0011" for digits 0 to 9 base 10
- Example (Cont.): BCD to Excess 3
 - Map functions and find minimum cost SOP equations for each

Example: BCD to Excess 3

<table>
<thead>
<tr>
<th>Input BCD</th>
<th>Output Excess-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCD</td>
<td>WXYZ</td>
</tr>
<tr>
<td>0000</td>
<td>0011</td>
</tr>
<tr>
<td>0001</td>
<td>0100</td>
</tr>
<tr>
<td>0011</td>
<td>0110</td>
</tr>
<tr>
<td>0100</td>
<td>0111</td>
</tr>
<tr>
<td>0101</td>
<td>1000</td>
</tr>
<tr>
<td>0110</td>
<td>1001</td>
</tr>
<tr>
<td>0111</td>
<td>1010</td>
</tr>
<tr>
<td>1000</td>
<td>1011</td>
</tr>
<tr>
<td>1001</td>
<td>1011</td>
</tr>
</tbody>
</table>

Note: All BCD codes greater than "9" can be assigned "Don't Cares" in the K-Map. Such BCD codes are never possible.

Example (Cont.): BCD to Excess 3

- Map functions and find minimum cost SOP equations for each
Example (Cont.): BCD to Excess 3

- Next, we will manipulate the equations to expose some shared terms:
 - The term (C + D) can be used more than once to simplify the implementation
 - See Fig. 3-10 in Mano and Kime for the implementation

An Alternative: BCD to Excess 3

- Another Approach: Excess-3 is defined as BCD plus 3.
- Adding 3 to BCD to Excess-3:

\[
\begin{array}{ccc}
A & B & C & D \\
\hline
0 & 0 & 1 & 1 \\
\end{array}
\]

Here HA is a Half-Adder and FA is a Full-Adder (We will discuss these later in the chapter).

Functional Block: Decoders

A Decoder converts \(n \) binary bits to a maximum of \(2^n \) unique output lines.
An \(m \)-to-\(n \) line decoder, where \(m \leq 2^n \), can be used to:
- Generate \(2^n \) (or fewer) minterms.
- Select one of \(2^n \) items

Decoders are sometimes known as demultiplexers when enabled with a separate data-in line.

2-to-4 Line Decoder

This device takes:
- \(m=2 \) input lines
- and decodes minterms for:
 \(m=2^2 = 4 \) output lines.

2-to-4 Line Demultiplexer

This device takes:
- \(m=2 \) input lines
- and decodes minterms for:
 \(m=2^2 = 4 \) output lines
- where each output is:
 ANDised with an input, X.

If X is viewed as an Enable, all outputs are 0 for \(X = 0 \) and one output is 1 for \(X = 1 \).
If X is viewed as Data, then this data is sent to one or the outputs.

Example: 74F138 Demultiplexer

74F138 truth table:

<table>
<thead>
<tr>
<th>Enables</th>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3 D2 D1 D0</td>
<td>0 0 1 1</td>
<td>0 1 1 1</td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>0 1 1 1</td>
<td></td>
</tr>
<tr>
<td>0 0 1 0</td>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>0 0 1 0</td>
<td></td>
</tr>
<tr>
<td>0 0 1 1</td>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>0 1 1 1</td>
<td>0 0 0 0</td>
<td></td>
</tr>
</tbody>
</table>

Note: This "Truth Table" uses the x (or -) to mean "this could be either 0 or 1". Thus, it "compacts" some of \(2^5 = 64 \) lines.
Implementing Logic with Decoders

Decoders provide minterms directly. Simply "OR" the appropriate minterm outputs to make any logic function desired.

Active low decoders behave as the first NAND gate in a NAND-NAND, Sum of Products implementation.

Active high decoders behave as first stage AND gates in a AND-OR Sum of Products implementation.

Two or more active high decoders driven from different bits of a binary code can be used to form minterms by "ANDING" their outputs. Similarly, active low decoders can be used to form minterms by "ORING" their outputs.

Example 1: \(F(A,B) = \sum m(0,3) \)

For this we use a 2-to-4 line decoder and sum minterms 0 and 3 with an OR gate:

Example 1: \(F(X,Y,Z) = \sum m(0,3,5,6) \)

Implementing Larger Minterms

Minterm \(m_{15} \) is formed by "ANDING" the \(D_3 \) outputs of each decoder.

Similarly \(m_0 \) is formed by "ANDING" the \(D_0 \) outputs of each decoder.

What minterm is formed by "ANDING" \(D_1 \) (upper) and \(D_2 \) (lower) outputs?

This works best with widely scattered, sparse minterms.

Functional Block: Encoders

- Encoders perform the "inverse" operation of decoders, taking a code in one format and encoding it into another format.
- Many encoders consist of just OR gates. For example an 8-to-3 binary encoder consists of three 4-input OR gates, OR2, OR1 and OR0. Input \(I_i \), \(i = 0, \ldots, 7 \) is connected to an input on OR\(j \) if the binary representation of \(i \) has a 1 in position \(j \).
- A priority encoder is used to generate a code for the "most significant" bit set in a string of bits. This can be used to find the first one in a word, or to select external events in priority order. An example of a MSI priority encoder is the 74F148, 8 line to 3 line priority encoder. It can be cascaded to encode higher numbers of bits.

Encoder Example

- Encode 4 lines 0, 1, 2, 3 into the corresponding binary codes.
Review: Decoders and Encoders

A Decoder converts \(n \) binary bits to a maximum of \(2^n \) unique output lines.

Decoders are sometimes known as demultiplexers when enabled with a separate data-in line.

Decoders implement minterms directly.

Use a decoder and an OR gate to form Sum-of-Minterms directly.

Encoders perform the "inverse" operation of decoders, taking a code in one format and encoding it into another format.

Example: A 4-to-1 multiplexer

The 4-to-1 line multiplexer uses the same minterm decoder core.

It is like a demultiplexer with individual data input lines (instead of just one) and an output OR gate.

Multiplexers

A Multiplexer (MUX) is another common functional block.

A Multiplexer uses \(n \) binary select bits to choose from a maximum of \(2^n \) unique input lines.

Like a decoder, it decodes minterms internally.

Unlike a decoder, it has only one output line.

The decoded minterms are used to select data from one of up to \(2^n \) unique data input lines.

The output of the multiplexer is the data input whose index is specified by the \(n \) bit code.

Example: Gray to Binary Code

The Gray code has adjacent elements separated by only one bit change.

We wish to convert a 3-bit Gray code to a binary code.

The function table on the right documents the required conversion.

The Gray to Binary Code Converter requires us to implement three separate, three-input Boolean functions.
Gray to Binary (Continued)

First step:
Let's get the function table into a logical order by reordering the input Gray code values in binary sequence:

\begin{tabular}{|c|c|c|c|c|c|}
\hline
Gray & Binary & x & y & z \\
\hline
A & B & C & x & y & z \\
\hline
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 \\
\hline
By inspection:
\end{tabular}

\[x = F(A,B,C) = \sum m(1, 3, 5, 7) \]
\[y = G(A,B,C) = \sum m(1, 2, 5, 6) \]
\[z = H(A,B,C) = \sum m(1, 2, 4, 7) \]

Note:
\(x(A,B,C) = C \), is an easy function to implement. (No logic gates needed!)
Function \(y(A,B,C) = B' \cdot C + B' \cdot C \) is a bit harder to implement.
Function \(z(A,B,C) \) looks familiar. What is it?

The K-Maps

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
A & B & C & Y & Z \\
\hline
A & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
A & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
A & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
A & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
\hline
Note:
\[x(A,B,C) = C \], is an easy function to implement. (No logic gates needed!)
Function \(y(A,B,C) = B' \cdot C + B' \cdot C \) is a bit harder to implement.
Function \(z(A,B,C) \) looks familiar. What is it?

Other MUX Implementations

We can also use two 4-to-1 MUX blocks and implement \(y \) and \(z \).
Suppose we factor out \(A \) and use \(B \) and \(C \) as the select inputs:

In this case, the MUX elements are acting like a "Read Only Memory" (ROM).

MUX Implementations (Cont.)

Factoring out variable \(A \) leads to the following implementation with two, 4-to-1 MUXes:

\[\begin{align*}
A & \quad \text{4-to-1} \\
A & \quad \text{4-to-1} \\
\end{align*} \]

As before, \(x = C \).
MUX: (Cont.) Factoring out B

<table>
<thead>
<tr>
<th>Gray</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B C</td>
<td>x y z</td>
</tr>
<tr>
<td>0 0 0</td>
<td>0 y = B' 0 z = B</td>
</tr>
<tr>
<td>0 1 0</td>
<td>1 y = B' 1 z = B'</td>
</tr>
<tr>
<td>0 1 1</td>
<td>0 y = B' 1 z = B'</td>
</tr>
<tr>
<td>1 0 0</td>
<td>0 y = B 1 z = B'</td>
</tr>
<tr>
<td>1 0 1</td>
<td>1 y = B 0 z = B'</td>
</tr>
<tr>
<td>1 1 0</td>
<td>0 y = B 1 z = B</td>
</tr>
<tr>
<td>1 1 1</td>
<td>0 y = B 0 z = B</td>
</tr>
</tbody>
</table>

Note: We re-arranged the table (fixing A and C and varying B from 0 to 1 in each cell) to simplify this procedure. It still looks like factoring A was better.

MUX: (Cont.) Factoring out A

<table>
<thead>
<tr>
<th>Gray</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B C</td>
<td>x y z</td>
</tr>
<tr>
<td>0 0 0</td>
<td>0 D0 = 0 0 D0 = 0 0 D0 = A</td>
</tr>
<tr>
<td>1 0 0</td>
<td>1 D1 = 1 1 D1 = 1 1 D1 = A'</td>
</tr>
<tr>
<td>0 1 0</td>
<td>0 D2 = 0 1 D2 = 1 1 D2 = A'</td>
</tr>
<tr>
<td>1 1 0</td>
<td>0 D3 = 0 0 D3 = A</td>
</tr>
<tr>
<td>1 1 1</td>
<td>0 D3 = 1 1 D3 = 0 0 D3 = A</td>
</tr>
</tbody>
</table>

Note: We re-arranged the table (fixing B and C and varying A from 0 to 1 in each cell) to simplify this procedure. Factoring A is best! Note also that x = C holds.

Summary

- Analysis
 - Forward – backward trace through the circuit to obtain output equations or truth table
 - Vice versa will also find the equations and truth table
- Know the functions performed by the following functional blocks:
 - Decoders, Demultiplexers, Encoders, Multiplexers
- Know how to implement Boolean functions using:
 - Multiplexers
 - Decoders