COURSE CONDUCT

• Instructors
 Charles Kime
 Yu Hen Hu
 Ed Brann
 Fahad Ahmad

• Text

ECE/Comp. Sci. 352 Course Materials at Bob’s Copy Shop

(Continued)

• Responsibilities
 You are responsible for all reading assignments and lecture material and, if you miss a lecture, obtaining handouts and studying lecture notes of others.

• Computer Usage:
 Logic reduction, logic diagram entry and logic simulation using CAD software on CAE UNIX workstations. Unix usage required - CAE Unix Tutorials - execute newuser at CAE - Mentor Graphics Tools Tutorial is required!
 Used for course design projects and, occasionally, homework.
• Homework and Projects
 Homework is not submitted but very important to your learning and quiz performance! Solutions on Web Page CAD-based design projects (one individual and one team) will be submitted and graded.

• Exams
 Four Quizzes - See Course Conduct for rules
 One Final - Note date and time and plan to be there - no excuses short of death or serious illness.

• Discussions
 Optional discussions do not meet on a regular schedule - reviews before exams - project help sessions

• Consultation
 Use office hours and e-mail.
 Don’t wait until it is too late to get help!
• Grading
 60% Four Quizzes
 20% Projects
 20% Final Exam
• Nature of Course
 First ECE-taught course for most students
 Material not too difficult, but fast-paced with fairly high expectations. First five weeks tends to be easy, but ramps up thereafter! So don’t be complacent!
 Workload per credit high compared to typical lower-level course

• Objective:
 To be able to analyze and design digital logic systems by understanding formal foundations and selected design techniques.
• What is a digital system?
 Obvious example?
 Less obvious examples?
 Hint 1: In 1997, 35 in the average North American home.
 Hint 2: In 1998, over 4 billion sold.
 PCs and microcontrollers are, by definition, “computers.”
• What is digital?
 Information represented by discrete values such as True and False, Off and On, or integers.

 \[
 \begin{array}{c|c}
 H & \text{Contrasts with analog which takes on continuous values.} \\
 L & \end{array}
 \]

Why digital and why binary (two discrete values)?
 Provides more reliable implementation for many tasks
 Design process easier
 Integrated circuit fabrication much easier.

Definition - **Bit** - binary digit

Information representation - strings of bits
WHAT IS THIS COURSE ABOUT?
Digital Computer

• What is a Digital Computer?
 See Text Figure 1-2

WHAT IS THE CONTENT OF THE COURSE?

• Boolean Algebra
• Logic components
• Combinational logic circuit analysis and design
• Synchronous sequential logic circuit analysis and design
• Digital subsystems
• Basic computer organization and design