Lecture 13.
MLP (III):
Back-Propagation
Outline

• General cost function
• Momentum term
• Update output layer weights
• Update internal layers weights
• Error back-propagation
General Cost Function

\[E = \frac{1}{2} \sum_{k=1}^{K} \sum_{i=1}^{N(L)} [e_i(k)]^2 = \frac{1}{2} \sum_{k=1}^{K} \sum_{i=1}^{N(L)} [d_i(k) - z_i^{(L)}(k)]^2 \]

1 ≤ k ≤ K (K: # inputs/epoch); 1 ≤ K ≤ # training samples
i: sum over all output layer neurons.
N(ℓ): # of neurons in ℓ\(^{th}\) layer. ℓ = L for output layer.
Objective: Finding optimal weights that minimize \(E \).
Approach: Use Steepest descent gradient learning, similar to the single neuron error correcting learning, but with multiple layers of neurons.
Gradient Based Learning

Gradient based weight updating with momentum —

\[w(t+1) = w(t) - \eta \nabla_w E + \mu (w(t) - w(t-1)) \]

\(\eta \): learning rate (step size),
\(\mu \): momentum \((0 \leq \mu < 1)\)
\(t \): epoch index.

Define: \(_v(t) = w(t) - w(t-1) \) then

\[v(t + 1) = \mu \cdot v(t) - \eta \cdot g(t) \]

\[= \mu^{t+1} \cdot v(0) - \eta \cdot \sum_{m=0}^{t} \mu^{t-m} \cdot g(m) \]
Momentum

- Momentum term computes an exponentially weighted average of past gradients.
- If all past gradients in the same direction, momentum results in increase of step size. If gradient directions changes violently, momentum reduces gradient changes.
Training Passes

Feed-forward

Back-propagation

Input

Output

Target value

Error

weights

weights

weights

weights
Training Scenario

• Training is performed by “epochs”. During each epoch, the weights will be updated once.

• At the beginning of an epoch, one or more (or even the entire set of) training samples will be fed into the network. The feed-forward pass will compute output using present weight values and the least square error will be computed.

• Starting from the output layer, the error will be back-propagated toward the input layer. The error term is called the δ-error.

• Using the δ-error and the hidden node output, the weight values are updated using the gradient descent formula with momentum.
Updating Output Weights

Weight Updating Formula — error-correcting Learning
Weights are fixed over entire epoch. Hence we drop the index \(t \) on the weight: \(w_{ij}(t) = w_{ij} \)

For weights \(w_{ij} \) connecting to the output layer, we have

\[
- \frac{\partial E}{\partial w_{ij}^{(L)}} = - \sum_{k=1}^{K} \left(\frac{\partial E(k)}{\partial z_i^{(L)}(k)} \frac{\partial z_i^{(L)}(k)}{\partial w_{ij}^{(L)}} \right) \\
= \sum_{k=1}^{K} [d_i(k) - z_i^{(L)}(k)] f'[u_i^{(L)}(k)] \frac{\partial u_i^{(L)}(k)}{\partial w_{ij}^{(L)}} = \sum_{k=1}^{K} \delta_i^{(L)}(k) z_j^{(L-1)}(k)
\]

Where the \(\delta \)-error is defined as

\[
\delta_i^{(L)}(k) \equiv \frac{\partial E}{\partial u_i^{(L)}(k)} = [d_i(k) - z_i^{(L)}(k)] f'[u_i^{(L)}(k)]
\]
Updating Internal Weights

- For weight $w_{ij}^{(\ell)}$ connecting $(\ell-1)^{th}$ and ℓ^{th} layer ($\ell \geq 1$), similar formula can be derived:

$$- \frac{\partial E}{\partial w_{ij}^{(\ell)}} = - \sum_{k=1}^{K} \frac{\partial E}{\partial u_{i}^{(\ell)}(k)} \frac{\partial u_{i}^{(\ell)}(k)}{\partial w_{ij}^{(\ell)}} = \sum_{k=1}^{K} \delta_{i}^{(\ell)}(k) z_{j}^{(\ell-1)}(k)$$

$1 \leq i \leq N(\ell)$, $0 \leq j \leq N(\ell - 1)$ with $z_{0}^{(\ell-1)}(k) = 1$. Here the delta error for internal layer is also defined as

$$\delta_{i}^{(\ell)}(k) = \frac{\partial E}{\partial u_{i}^{(\ell)}(k)}$$
Delta Error Back Propagation

For $\ell = L$, as derived earlier,

$$\delta_i^{(L)}(k) = \frac{\partial E}{\partial u_i^{(L)}(k)} = f'[u_i^{(L)}(k)] \cdot [d_i(k) - z_i^{(L)}(k)]$$

For $\ell < L$, $\delta_i^{(\ell)}(k)$ can be computed iteratively from the delta error of an upper layer, $\delta_m^{(\ell+1)}(k)$:

$$\delta_i^{(\ell)}(k) = \frac{\partial E}{\partial u_i^{(\ell)}(k)} = \frac{\partial E}{\partial z_i^{(\ell)}(k)} \cdot \frac{\partial z_i^{(\ell)}(k)}{\partial u_i^{(\ell)}(k)} = \frac{\partial E}{\partial z_i^{(\ell)}(k)} f'(u_i^{(\ell)}(k))$$

$$= f'(u_i^{(\ell)}(k)) \cdot \sum_{m=1}^{N^{(\ell+1)}} \frac{\partial E}{\partial u_m^{(\ell+1)}(k)} \cdot \frac{\partial u_m^{(\ell+1)}(k)}{\partial z_i^{(\ell)}(k)}$$
Error Back Propagation (Cont'd)

Note that for $1 \leq m \leq N$

$$u_{m}^{(\ell+1)}(k) = \sum_{n=0}^{N(\ell)} w_{mn}^{(\ell+1)} z_{n}^{(\ell)}(k)$$

Hence,

$$\delta_{i}^{(\ell)}(k) = f'(u_{i}^{(\ell)}(k)) \cdot \sum_{m=1}^{N(\ell+1)} \delta_{m}^{(\ell+1)}(k) \cdot \frac{\partial u_{m}^{(\ell+1)}(k)}{\partial z_{i}^{(\ell)}(k)}$$

$$= f'(u_{i}^{(\ell)}(k)) \cdot \sum_{m=1}^{N(\ell+1)} \delta_{m}^{(\ell+1)}(k) \cdot w_{mi}^{(\ell+1)}$$
Summary of Equations (per epoch)

- **Feed-forward pass:** \(z_{0}^{(\ell-1)}(k) \equiv 1 \)
 For \(k = 1 \) to \(K, \ell = 1 \) to \(L, i = 1 \) to \(N(\ell) \),
 \[
 z_{i}^{(\ell)}(k) = f(u_{i}^{(\ell)}(k)) = \frac{1}{1 + \exp[-u_{i}^{(\ell)}(k)]}
 \]
 \[
 u_{i}^{(\ell)}(k) = \sum_{j=0}^{N} w_{ij}^{(\ell)}(t) z_{j}^{(\ell-1)}(k) \quad t: \text{epoch index} \quad k: \text{sample index}
 \]

- **Error-back-propagation pass:**
 For \(k = 1 \) to \(K, \ell = L \) to \(1, i = 1 \) to \(N(\ell) \),
 \[
 \delta_{i}^{(\ell)}(k) = \begin{cases}
 f'(u_{i}^{(\ell)}(k)) \cdot \sum_{m=1}^{N(\ell+1)} \delta_{m}^{(\ell+1)}(k) \cdot w_{mi}^{(\ell+1)}(t) & \ell < L, \\
 f'(u_{i}^{(L)}(k)) \cdot [d_{i}(k) - z_{i}^{(L)}(k)] & \ell = L.
 \end{cases}
 \]
Summary of Equations (cont’d)

- **Weight update pass:**
 For $k = 1$ to K, $\ell = 1$ to L, $i = 1$ to $N(\ell)$,

 \[
 - \frac{\partial E}{\partial w_{ij}^{(\ell)}(t)} = \sum_{k=1}^{K} \delta_{i}^{(\ell)}(k) z_{j}^{(\ell-1)}(k)
 \]

 \[
 w_{ij}^{(\ell)}(t+1) = w_{ij}^{(\ell)}(t) - \eta \frac{\partial E}{\partial w_{ij}^{(\ell)}(t)} + \mu \left(w_{ij}^{(\ell)}(t) - w_{ij}^{(\ell)}(t-1) \right)
 \]