Motivation and Introduction

• Ref: F.C. Hennie “Fault detection experiments for sequential circuits”, 5th annual symposium on switching and automata theory, 1964.
• Motivation
 – Test generation at higher level of abstraction in which only the function of the circuit is known but the implementation (structure) is not known.

An example

• Consider testing a 4-bit ALU
 – We need not know the structure – we can determine the number of inputs and outputs. If the number is small we can test the circuit exhaustively.
 – Can such a technique be used for sequential circuits, even if it is fairly small, such as a small finite state machine. Such FSMs exist often in practice (embedded controllers are good examples of such FSMs).
 • Derivation of tests for such circuits is of interest for the following two reasons
 – Need not worry about the realization and underlying technology
 – Such tests can also be used for validation and verification

Sequential circuit model

• Two ways to express a state machine
 – State table
 – State diagram
 – M = (Q, I, O, NS, OU)
 Q = set of states
 I = set of inputs from an input alphabet
 O = set of outputs from an output alphabet
 NS = next state function
 OU = output function

Fault model

• Two formulations of the test problem
 – Given the behavior of the circuit (such as state table), verify the behavior by applying the inputs and observing the outputs. Objective is to find a sequence of inputs that will verify the behavior.
 – Given a sequence of inputs and outputs, construct a state machine that will behave as specified by the input/output sequence
 • The above two problems have similarities but we will address the first of the two problems.
Fault model

- Assumptions about the faults
 - Number of states in the FSM are known or these are upperbounded
 - No fault causes an increase in the number of states or increase beyond the upperbound
- We will also limit our discussion to a class of FSMs that have some special properties. These properties are defined in the “theory” section of the discussion

Theory

- Strongly connected machine/circuit: every state is reachable from every other state
 - There are no “source” or “sink” states
- An example FSM – strongly connected?

<table>
<thead>
<tr>
<th>PS</th>
<th>x = 0</th>
<th>x = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C/0</td>
<td>A/0</td>
</tr>
<tr>
<td>B</td>
<td>B/1</td>
<td>D/0</td>
</tr>
<tr>
<td>C</td>
<td>A/0</td>
<td>B/0</td>
</tr>
<tr>
<td>D</td>
<td>B/1</td>
<td>C/0</td>
</tr>
</tbody>
</table>

Theory (contd.)

- Synchronizing sequence
 - Application of this sequence takes the machine to a known state (final state), irrespective of the start state (initial state) of the circuit
- Synchronizing tree – see next slide

Theory (contd.)

- Synchronizing tree
- Ambiguity – states the circuit may be in
- Example:
 - Initial ambiguity (ABCD)
 - After an application of 0 the ambiguity is (ABC)
 - SS = 0 1 0 1 0 (Final state = B)

Theory (contd.)

- Homing sequence – application of this sequence and observation of outputs can determine the final state of the circuit
- Distinguishing sequence – application of this sequence and the observation of outputs and determine the initial (start) state of the circuit
 - Clearly this can also determine the final state of the circuit

Theory (contd.)

- Homing sequence
 - Construct a homing tree
 - 010 is a homing sequence
 - If output 000 – final state is C
 - If output 101 – final state is B
- Distinguishing sequence –
 - Construct a distinguishing tree
 - This machine does not have a DS
- Transfer sequence –
 - a sequence, Tij, that will take the machine from state i to j
Theory (contd.)

- Example:
 - SS ?
 - H S ?
 - DS = 100

<table>
<thead>
<tr>
<th>st</th>
<th>output</th>
<th>st</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 0 0</td>
<td>C</td>
</tr>
<tr>
<td>B</td>
<td>1 0 1</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>0 0 1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>1 1 0</td>
<td>C</td>
</tr>
</tbody>
</table>

Checking experiment design

- Three part sequence
 - Part 1: Initialize the FSM to a known state
 - Part 1: verify that the FSM has n states
 - Check that there are n distinct states
 - Part 2: verify that all transitions from every state are correct
 - Apply one input at a time and check the output and the state of the circuit

Checking experiment design (contd.)

- Checking sequence construction
 - Apply SS and take the circuit to a known state
 - Repeat for each state
 - (known state) DS (transfer to another, different, state)
 - DS is used to verify the known state
 - Repeat of each state and every input
 - (known state) input DS (transfer to a known state)
 - verify output when input is applied
 - DS is used to verify that the transition was indeed correct

Checking experiment design (contd.)

- An example
 - SS = 01010
 - DS = 100

<table>
<thead>
<tr>
<th>PS</th>
<th>x = 0</th>
<th>x = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C/0</td>
<td>D/1</td>
</tr>
<tr>
<td>B</td>
<td>C/0</td>
<td>A/1</td>
</tr>
<tr>
<td>C</td>
<td>A/1</td>
<td>B/0</td>
</tr>
<tr>
<td>D</td>
<td>B/0</td>
<td>C/1</td>
</tr>
</tbody>
</table>

| Phase 1: SS TCA DS TCB DS TAC DS TAD DS |
| C | C | A | A | C |
| Phase 2: TCA 0 DS TAA 1 DS check output null check output |

Checking experiment design (contd.)

- Checking sequence – reducing sequence length
 - States need not be verified in the order we want them, they can be verified as they appear while designing the sequence
 - Phases 1 and 2 can be overlapped
 - Overlap parts of sequences where ever possible
 - If there is more than one DS, these can be integrated with in the design of sequence

Limitations of the method

- Assumptions are very restrictive and limit the application of the method
- Machine do not have SS, DS, etc. require more complex algorithms
- Length of the sequence can be very long
 - SS can be as long as O(\(n^3\))
 - The known best bound is \(n(n+1)(n-1)/6 \)
 - TS can be no longer than length n
 - DS – this can be very long in theory
 - \((n-1)n^2 \)
 - Hence total sequence length can be \(O(2^n) \), where \(k \) is the number of flip-flops and \(n = 2^k \)
<table>
<thead>
<tr>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Need for functional testing methods for sequential circuits</td>
</tr>
<tr>
<td>• Described a fault model for functional faults in FSMs</td>
</tr>
<tr>
<td>• Developed theoretical foundation for FSM testing</td>
</tr>
<tr>
<td>• Design of test sequence</td>
</tr>
<tr>
<td>• Limitations of the method</td>
</tr>
</tbody>
</table>