Motivation

- Early 1990's – Fabrication Line had 50 to 1000 defects per million (dpm) chips
 - IBM wants to get 3.4 defects per million (dpm) chips (0 defects, 6σ)
- Conventional way to reduce defects:
 - Increasing test fault coverage
 - Increasing burn-in coverage
 - Increase Electro-Static Damage awareness
- Newer way to reduce defects:
 - I_{DDQ} Testing – also useful for Failure Effect Analysis

Stuck-at Faults Detected by I_{DDQ} Tests

- Bridging faults with stuck-at fault behavior
 - Levi – Bridging of a logic node to V_{DD} or V_{SS} – few of these
 - Transistor gate oxide short of 1 KΩ to 5 KΩ
- Floating MOSFET gate defects – do not fully turn off transistor
NAND Open Circuit Defect – Floating gate

- The fault manifests as stuck-at, weak ON for N-FET, or delay fault
- Some manifestations can be tested by IDDQ tests

Floating Gate Defects

- Small break in logic gate inputs (100 – 200 Angstroms) lets wires couple by electron tunneling
 - Delay fault and I_{DDQ} fault
- Large open results in stuck-at fault – not detectable by I_{DDQ} test

Bridging Faults S1 – S5

- Caused by absolute short (< 50 Ω) or higher R
- Segura et al. evaluated testing of bridges with 3 CMOS inverter chain
- I_{DDQRb} tests fault when $R_b > 50$ KΩ or $0 \leq R_b \leq 100$ KΩ
- Largest deviation when $V_{in} = 5$ V bridged nodes at opposite logic values

$SI I_{DDQ}$ Depends on K, Rb

- K is ratio of width of n_2 v/s n_1
- I_{DDQ} (μA)

Delay Faults

- Most random CMOS defects cause a timing delay fault, not catastrophic failure
- Many delay faults detected by I_{DDQ} test – late switching of logic gates keeps I_{DDQ} elevated
- Delay faults not detected by I_{DDQ} test
 - Resistive fault in interconnect
 - Increased transistor threshold voltage fault

Leakage Faults

- Gate oxide shorts cause leaks between gate & source or gate & drain

Weak Faults

- $nFET$ passes logic 1 as 5 V – V_{Th}
- $pFET$ passes logic 0 as 0 V + $|V_{Th}|$
- Weak fault – one device in C-switch does not turn on
 - Causes logic value degradation in C-switch
Transistor Stuck-Closed Faults

- Due to gate oxide short (GOS)
- \(k \) = distance of short from drain
- \(R_s \) = short resistance
- \(I_{DDQ} \) current results show 3 or 4 orders of magnitude elevation

Gate Oxide Short

Logic / \(I_{DDQ} \) Testing Zones

Fault Coverages for \(I_{DDQ} \) Fault Models

Instrumentation Problems

- Need to measure < 1 \(\mu \)A current at clock > 10 kHz
- Off-chip \(I_{DDQ} \) measurements degraded
 - Pulse width of CMOS IC transient current
 - Impedance loading of tester probe
 - Current leakages in tester
 - High noise of tester load board
- Much slower rate of current measurement than voltage measurement

Sematech Study

- IBM Graphics controller chip – CMOS ASIC, 166,000 standard cells
- 0.8 \(\mu \)m static CMOS, 0.45 \(\mu \)m Lines (\(L_{eff} \)), 40 to 50 MHz Clock, 3 metal layers, 2 clocks
- Full boundary scan on chip
- Tests:
 - Scan flush – 25 ns latch-to-latch delay test
 - 99.7% scan-based stuck-at faults (slow 400 ns rate)
 - 52% SAF coverage functional tests (manually created)
 - 90% transition delay fault coverage tests
 - 96% pseudo-stuck-at fault cov. \(I_{DDQ} \) Tests
Sematech Results

- Test process: Wafer Test → Package Test
 → Burn-In & Retest → Characterize & Failure Analysis
- Data for devices failing some, but not all, tests.
 \[I_{DDQ} (5 \mu A \text{ limit}) \]

<table>
<thead>
<tr>
<th></th>
<th>pass</th>
<th>fail</th>
<th>pass</th>
<th>fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan-based Stuck-at</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pass</td>
<td>6</td>
<td>1463</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>fail</td>
<td>14</td>
<td>0</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>Functional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pass</td>
<td>6</td>
<td>1</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>fail</td>
<td>52</td>
<td>36</td>
<td>1251</td>
<td>fail</td>
</tr>
</tbody>
</table>

Sematech Conclusions

- Hard to find point differentiating good and bad devices for \(I_{DDQ} \) & delay tests
- High # passed functional test, failed all others
- High # passed all tests, failed \(I_{DDQ} > 5 \mu A \)
- Large # passed stuck-at and functional tests
 - Failed delay & \(I_{DDQ} \) tests
- Large # failed stuck-at & delay tests
 - Passed \(I_{DDQ} \) & functional tests
- Delay test caught delays in chips at higher Temperature burn-in – chips passed at lower T.

Limitations of \(I_{DDQ} \) Testing

- Sub-micron technologies have increased leakage currents
 - Transistor sub-threshold conduction
 - Harder to find \(I_{DDQ} \) threshold separating good & bad chips
- \(I_{DDQ} \) tests work:
 - When average defect-induced current greater than average good IC current
 - Small variation in \(I_{DDQ} \) over test sequence & between chips
- Now less likely to obtain two conditions

Summary

- \(I_{DDQ} \) tests improve reliability, find defects causing:
 - Delay, bridging, weak faults
 - Chips damaged by electro-static discharge
- No natural breakpoint for current threshold
 - Get continuous distribution – bimodal would be better
- Conclusion: now need stuck-fault, \(I_{DDQ} \), and delay fault testing combined
- Still uncertain whether \(I_{DDQ} \) tests will remain useful as chip feature sizes shrink further