ECE 553: TESTING AND TESTABLE DESIGN OF DIGITAL SYSTEMS

Built-In Self-Test (BIST) - 1

Overview: TPG and RC

• Motivation and economics
• Definitions
• Built-in self-testing (BIST) process
• BIST pattern generation (PG)
• BIST response compaction (RC)
• Aliasing definition and example
• Summary

BIST Motivation

• Useful for field test and diagnosis (less expensive than a local automatic test equipment)
• Software tests for field test and diagnosis:
 ▫ Low hardware fault coverage
 ▫ Low diagnostic resolution
 ▫ Slow to operate
• Hardware BIST benefits:
 ▫ Lower system test effort
 ▫ Improved system maintenance and repair
 ▫ Improved component repair
 ▫ Better diagnosis at component level

Costly Test Problems Alleviated by BIST

• Increasing chip logic-to-pin ratio – harder observability
• Increasingly dense devices and faster clocks
• Increasing test generation and application times
• Increasing size of test vectors stored in ATE
• Expensive ATE needed for GHz clocking chips
• Hard testability insertion – designers unfamiliar with gate-level logic, since they design at behavioral level
• In-circuit testing no longer technically feasible
• Circuit testing cannot be easily partitioned

Benefits and Costs of BIST with DFT

<table>
<thead>
<tr>
<th>Level</th>
<th>Design and test</th>
<th>Fabrication</th>
<th>Manuf. Test</th>
<th>Maintenance test</th>
<th>Diagnosis and repair</th>
<th>Service interruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chips</td>
<td>+/-</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boards</td>
<td>+/-</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>+/-</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

+ Cost increase
- Cost saving
+/- Cost increase may balance cost reduction

Economics – BIST Costs

• Chip area overhead for:
 ▫ Test controller
 ▫ Hardware pattern generator
 ▫ Hardware response compacter
 ▫ Testing of BIST hardware
• Pin overhead – At least 1 pin needed to activate BIST operation
• Performance overhead – extra path delays due to BIST
• Yield loss – due to increased chip area or more chips in system because of BIST
• Reliability reduction – due to increased area
• Increased BIST hardware complexity – happens when BIST hardware is made testable
BIST Benefits

- Faults tested:
 - Single combinational / sequential stuck-at faults
 - Delay faults
 - Single stuck-at faults in BIST hardware

- BIST benefits
 - Reduced testing and maintenance cost
 - Lower test generation cost
 - Reduced storage / maintenance of test patterns
 - Simpler and less expensive ATE
 - Can test many units in parallel
 - Shorter test application times
 - Can test at functional system speed

Definitions

- BILBO – Built-in logic block observer, extra hardware added to flip-flops so they can be reconfigured as an LFSR pattern generator or response compacter, a scan chain, or as flip-flops
- Concurrent testing – Testing process that detects faults during normal system operation
- CUT – Circuit-under-test
- Exhaustive testing – Apply all possible 2^n patterns to a circuit with n inputs
- Irreducible polynomial – Boolean polynomial that cannot be factored
- LFSR – Linear feedback shift register, hardware that generates pseudo-random pattern sequence

More Definitions

- Primitive polynomial – Boolean polynomial $p(x)$ that can be used to compute increasing powers n of x^n modulo $p(x)$ to obtain all possible non-zero polynomials of degree less than $p(x)$
- Pseudo-exhaustive testing – Break circuit into small, overlapping blocks and test each exhaustively
- Pseudo-random testing – Algorithmic pattern generator that produces a subset of all possible tests with most of the properties of randomly-generated patterns
- Signature – Any statistical circuit property distinguishing between bad and good circuits
- TPG – Hardware test pattern generator

BIST Process

- Test controller – Hardware that activates self-test simultaneously on all PCBs
- Each board controller activates parallel chip BIST Diagnosis effective only if very high fault coverage

BIST Architecture

- Note: BIST cannot test wires and transistors:
 - From PI pins to Input MUX
 - From POs to output pins

BILBO – Works as Both a TPG and a RC

- Built-in Logic Block Observer (BILBO) – 4 modes:
 1. Flip-flop
 2. LFSR pattern generator
 3. LFSR response compacter
 4. Scan chain for flip-flops
Complex BIST Architecture

- Testing epoch I:
 - LFSR1 generates tests for CUT1 and CUT2
 - BILBO2 (LFSR3) compacts CUT1 (CUT2)
- Testing epoch II:
 - BILBO2 generates test patterns for CUT3
 - LFSR3 compacts CUT3 response

Bus-Based BIST Architecture

- Self-test control broadcasts patterns to each CUT over bus – parallel pattern generation
- Awaits bus transactions showing CUT’s responses to the patterns: serialized compaction

Pattern Generation

- Store in ROM – too expensive
- Exhaustive
- Pseudo-exhaustive
- Pseudo-random (LFSR) – Preferred method
- Binary counters – use more hardware than LFSR
- Modified counters
 - Test pattern augmentation
 - LFSR combined with a few patterns in ROM
 - Hardware diffracter – generates pattern cluster in neighborhood of pattern stored in ROM

Exhaustive Pattern Generation (A Counter)

- Shows that every state and transition works
- For n-input circuits, requires all 2^n vectors
- Impractical for large n (> 20)

Pseudo-Exhaustive Pattern Generation

Random Pattern Testing
Pseudo-Random Pattern Generation

• **Standard Linear Feedback Shift Register (LFSR)**
 - Normally known as *External XOR* type LFSR
 - Produces patterns algorithmically – repeatable
 - Has most of desirable random # properties
 - Need not cover all 2^n input combinations
 - Long sequences needed for good fault coverage

Theory: LFSRs

- **Galois field** (mathematical system):
 - Multiplication by x same as right shift of LFSR
 - Addition operator is XOR (\oplus)
- T_s companion matrix for a standard (external EOR type) LFSR:
 - 1^n column 0, except nth element which is always 1 (X_0 always feeds X_{n-1})
 - Rest of row n – feedback coefficients h_i
 - Rest is identity matrix I – means a right shift
- Near-exhaustive (maximal length) LFSR:
 - Cycles through $2^n - 1$ states (excluding all-0)
 - 1 pattern of n 1’s, one of n-1 consecutive 0’s

Standard n-Stage LFSR

- If $h_i = 0$, that XOR gate is deleted

Matrix Equation for Standard LFSR

$$X(t+1) = T_s X(t)$$

LFSR Theory (contd.)

- Cannot initialize to all 0’s – hangs
- If X is initial state, progresses through states X, $T_s X$, $T_s^2 X$, $T_s^3 X$, ...
- Matrix period:
 - Smallest k such that $T_s^k = I$
 - k LFSR cycle length
 - Described by characteristic polynomial:
 $$f(x) = |T_s - I X| = 1 + h_1 x + h_2 x^2 + \cdots + h_n x^{n-1} + x^n$$

Example External XOR LFSR
Example: External XOR LFSR (contd.)

- Matrix equation:
 \[
 \begin{bmatrix}
 X_0(t+1) \\
 X_1(t+1) \\
 X_2(t+1)
 \end{bmatrix} =
 \begin{bmatrix}
 0 & 1 & 0 \\
 0 & 0 & 1 \\
 1 & 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 X_0(t) \\
 X_1(t) \\
 X_2(t)
 \end{bmatrix}
 \]

- Companion matrix:
 \[
 T_s = \begin{bmatrix}
 0 & 1 \\
 0 & 0 \\
 1 & 1
 \end{bmatrix}
 \]

- Characteristic polynomial:
 \[\text{Characteristic polynomial:} f(x) = 1 + x + x^3\]
 (read taps from right to left)

- Always have 1 and \(x^n\) terms in polynomial

External XOR LFSR

- Pattern sequence for example LFSR (earlier):
 \[
 \begin{array}{c|cccccccc}
 X_0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\
 X_1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
 X_2 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
 \end{array}
 \]

- Never repeat an LFSR pattern more than 1 time –Repeats same error vector, cancels fault effect

Modular Internal XOR LFSR

- Described by companion matrix \(T_m = T_s^T\)
- Internal XOR LFSR – XOR gates in between D flip-flops
- Equivalent to standard External XOR LFSR
 - With a different state assignment
 - Faster – usually does not matter
 - Same amount of hardware
- \[X(t+1) = T_m x X(t)\]
- \[f(x) = |T_m - I| X = 1 + h_1 x + h_2 x^2 + \ldots + h_{n-1} x^{n-1} + x^n\]
- Right shift – equivalent to multiplying by \(x\), and then dividing by characteristic polynomial and storing the remainder

Modular LFSR Matrix

\[
\begin{bmatrix}
 X_0(t+1) \\
 X_1(t+1) \\
 X_2(t+1) \\
 \cdots \\
 X_{p-3}(t+1) \\
 X_{p-2}(t+1) \\
 X_{p-1}(t+1)
 \end{bmatrix} =
 \begin{bmatrix}
 0 & 0 & 0 & \ldots & 0 & 0 & 1 \\
 1 & 0 & 0 & \ldots & 0 & h_1 \\
 0 & 1 & 0 & \ldots & 0 & h_2 \\
 \cdots \\
 0 & 0 & 0 & \ldots & 0 & 0 & h_{p-3} \\
 0 & 0 & 0 & \ldots & 1 & h_{p-2} \\
 0 & 0 & 0 & \ldots & 0 & 1 & h_{p-1}
 \end{bmatrix}
 \begin{bmatrix}
 X_0(t) \\
 X_1(t) \\
 X_2(t) \\
 \cdots \\
 X_{p-3}(t) \\
 X_{p-2}(t) \\
 X_{p-1}(t)
 \end{bmatrix}
 \]

Example Modular LFSR

- \[f(x) = 1 + x^2 + x^7 + x^8\]
- Read LFSR tap coefficients from left to right
Primitive Polynomials

- Want LFSR to generate all possible $2^n - 1$ patterns (except the all-0 pattern).
- Conditions for this – must have a primitive polynomial:
 - Monic – coefficient of x^n term must be 1
 - Modular LFSR – all D FF’s must right shift through XOR’s from X_0 through X_1, ..., through X_{n-1}, which must feed back directly to X_0.
 - Standard LFSR – all D FF’s must right shift directly from X_{n-1} through X_{n-2}, ..., through X_0, which must feed back into X_{n-1} through XORing feedback network.

Weighted Pseudo-Random Pattern Generation

- If $p(1)$ at all PIs is 0.5, $p_F(1) = 0.5^8 = \frac{1}{256}$
 - $p_F(0) = 1 - \frac{1}{256} = \frac{255}{256}$
- Will need enormous # of random patterns to test a stuck-at 0 fault on F – LFSR $p(1) = 0.5$
 - We must not use an ordinary LFSR to test this
- IBM – holds patents on weighted pseudo-random pattern generator in ATE.

Weighted Pattern Gen.

<table>
<thead>
<tr>
<th>w_1</th>
<th>w_2</th>
<th>Inv.</th>
<th>p_{output}</th>
<th>w_1</th>
<th>w_2</th>
<th>Inv.</th>
<th>p_{output}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1/8</td>
<td>1/8</td>
<td>0</td>
<td>0</td>
<td>1/8</td>
<td>1/8</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1/8</td>
<td>1/8</td>
<td>0</td>
<td>1</td>
<td>1/4</td>
<td>1/4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>3/4</td>
<td>1/16</td>
<td>0</td>
<td>1</td>
<td>3/4</td>
<td>1/16</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>3/4</td>
<td>1/16</td>
<td>0</td>
<td>1</td>
<td>3/4</td>
<td>1/16</td>
</tr>
</tbody>
</table>

Test Pattern Augmentation

- Secondary ROM – to get LFSR to 100% SAF coverage
 - Add a small ROM with missing test patterns
 - Add extra circuit mode to Input MUX – shift to ROM patterns after LFSR done
 - Important to compact extra test patterns
- Use diffrafter.
 - Generates cluster of patterns in neighborhood of stored ROM pattern
 - Transform LFSR patterns into new vector set
 - Put LFSR and transformation hardware in full-scan chain.
Response Compaction

- Severe amounts of data in CUT response to LFSR patterns – example:
 - Generate 5 million random patterns
 - CUT has 200 outputs
 - Leads to: 5 million x 200 = 1 billion bits response
- Uneconomical to store and check all of these responses on chip
- Responses must be compacted

Definitions

- Aliasing – Due to information loss, signatures of good and some bad machines match
- Compaction – Drastically reduce # bits in original circuit response – lose information
- Compression – Reduce # bits in original circuit response – no information loss – fully invertible (can get back original response)
- Signature analysis – Compact good machine response into good machine signature. Actual signature generated during testing, and compared with good machine signature
- Transition Count Response Compaction – Count # transitions from 0 to 1 and 1 to 0 as a signature

Transition Counting Details

- Transition count:
 \[C(R) = \sum_{i=1}^{m} (r_i \oplus r_{i+1}) \] for all \(m \) primary outputs
- To maximize fault coverage:
 - Make \(C(R_0) \) – good machine transition count – as large or as small as possible

LFSR for Response Compaction

- Use cyclic redundancy check code (CRCC) generator (LFSR) for response compacter
- Treat data bits from circuit POs to be compacted as a decreasing order coefficient polynomial
- CRCC divides the PO polynomial by its characteristic polynomial
 - Leaves remainder of division in LFSR
 - Must initialize LFSR to seed value (usually 0) before testing
- After testing – compare signature in LFSR to known good machine signature
- Critical: Must compute good machine signature

Example Modular LFSR Response Compacter

- LFSR seed value is “00000”
Polynomial Division

Inputs

<table>
<thead>
<tr>
<th>Inputs</th>
<th>x^0</th>
<th>x^1</th>
<th>x^2</th>
<th>x^3</th>
<th>x^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial State</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Logic Simulation:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Logic simulation: *Remainder = $1 + x^2 + x^3$*

0 \cdot 1 0 1 0 0 0 1
0 \cdot $x^0 + 1$ $x^1 + 0$ $x^2 + 1$ $x^3 + 0$ $x^4 + 0$ $x^5 + 0$ $x^6 + 1$ x^7

Symbolic Polynomial Division

\[
x^5 + x^3 + x + 1 \div \frac{x^7 + x^5 + x^3 + x^2}{x^5 + x^3 + x + 1}
\]

Remainder matches that from logic simulation of the response compacter!

Multiple-Input Signature Register (MISR)

- Problem with ordinary LFSR response compacter:
 - Too much hardware if one of these is put on each primary output (PO)
- Solution: MISR – compacts all outputs into one LFSR
 - Works because LFSR is linear – obeys superposition principle
 - Superimpose all responses in one LFSR – final remainder is XOR sum of remainders of polynomial divisions of each PO by the characteristic polynomial

MISR Matrix Equation

- $d_i(t)$ – output response on PO$_i$ at time t

\[
\begin{bmatrix}
X_0(t+1) \\
X_1(t+1) \\
\vdots \\
X_{n-3}(t+1) \\
X_{n-2}(t+1) \\
X_{n-1}(t+1)
\end{bmatrix} =
\begin{bmatrix}
0 & 1 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0 \\
0 & 0 & \ldots & 0 & 1
\end{bmatrix}
\begin{bmatrix}
X_0(t) \\
X_1(t) \\
\vdots \\
X_{n-3}(t) \\
X_{n-2}(t) \\
X_{n-1}(t)
\end{bmatrix}
+ \begin{bmatrix}
0 \\
0 \\
\vdots \\
1 \\
0 \\
0
\end{bmatrix}
\begin{bmatrix}
d_0(t) \\
d_1(t) \\
\vdots \\
d_{n-3}(t) \\
d_{n-2}(t) \\
d_{n-1}(t)
\end{bmatrix}
\]

Modular MISR Example

\[
\begin{bmatrix}
X_0(t+1) \\
X_1(t+1) \\
X_2(t+1)
\end{bmatrix} =
\begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
X_0(t) \\
X_1(t) \\
X_2(t)
\end{bmatrix}
+ \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}
\begin{bmatrix}
d_0(t) \\
d_1(t) \\
d_2(t)
\end{bmatrix}
\]

Multiple Signature Checking

- Use 2 different testing epochs:
 - 1st with MISR with 1 polynomial
 - 2nd with MISR with different polynomial
- Reduces probability of aliasing –
 - Very unlikely that both polynomials will alias for the same fault
- Low hardware cost:
 - A few XOR gates for the 2nd MISR polynomial
 - A 2-1 MUX to select between two feedback polynomials
Aliasing Probability

- Aliasing – when bad machine signature equals good machine signature
- Consider error vector $e(n)$ at POs
 - Set to a 1 when good and faulty machines differ at the PO at time t
- $P_{al} \equiv$ aliasing probability
- $p \equiv$ probability of 1 in $e(n)$
- Aliasing limits:
 - $0 < p \leq \frac{1}{2}$, $p^k \leq P_{al} \leq (1 - p)^k$
 - $\frac{1}{2} \leq p \leq 1$, $(1 - p)^k \leq P_{al} \leq p^k$

Experiment Hardware

- 3 bit exhaustive binary counter for pattern generator

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>abc</td>
<td>a_{sal}</td>
</tr>
<tr>
<td>000</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
</tr>
<tr>
<td>011</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>101</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>1</td>
</tr>
<tr>
<td>111</td>
<td>1</td>
</tr>
</tbody>
</table>

Transition Counting vs. LFSR

- LFSR aliases for f_{sal}, transition counter for a_{sal}

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>abc</td>
<td>a_{sal}</td>
</tr>
<tr>
<td></td>
<td>Good</td>
</tr>
<tr>
<td>000</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
</tr>
<tr>
<td>011</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>101</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>1</td>
</tr>
<tr>
<td>111</td>
<td>1</td>
</tr>
</tbody>
</table>

Summary

- LFSR pattern generator and MISR response compacter – preferred BIST methods
- BIST has overheads: test controller, extra circuit delay, Input MUX, pattern generator, response compacter, DFT to initialize circuit & test the test hardware
- BIST benefits:
 - At-speed testing for delay & stuck-at faults
 - Drastic ATE cost reduction
 - Field test capability
 - Faster diagnosis during system test
 - Less effort to design testing process
 - Shorter test application times

Appendix
LFSR Fault Coverage Projection
- Fault detection probability by a random number
 \[p(x)\,dx = \text{fraction of detectable faults with detection probability between } x \text{ and } x + dx \]
 \[p(x)\,dx \geq 0 \text{ when } 0 \leq x \leq 1 \]
 \[\int_0^1 p(x)\,dx = 1 \]
- Exist \(p(x)\,dx \) faults with detection probability \(x \)
- Mean coverage of those faults is \(xp(x)\,dx \)
- Mean fault coverage \(y_n \) of \(n \) vectors:
 \[I(n) = 1 - \int_0^1 (1 - x)^n p(x)\,dx \]
 \[y_n = I(n) + \frac{n}{\text{total faults}} \] (15.6)

LFSR Fault Coverage & Vector Length Estimation
- Random-fault-detection (RFD) variable:
 - Vector \(i \) at which fault first detected
 - \(w_i \) # faults with RFD variable \(i \)
 - So \(p(x) = \frac{1}{n_s} \sum_{i=1}^{N} w_i \, p_i(x) \)
- \(n_s \) size of sample simulated; \(N \) # test vectors
- \(w_0 = n_s - \sum_{i=1}^{N} w_i \)
- Method:
 - Estimate random first detect variables \(w_i \) from fault simulator using fault sampling
 - Estimate \(I(n) \) using book Equation 15.8
 - Obtain test length by inverting Equation 15.6 & solving numerically

Additional MISR Aliasing
- MISR has more aliasing than LFSR on single PO
- Error in CUT output \(d_j \) at \(t_i \), followed by error in output \(d_{j+h} \) at \(t_{i+h} \) eliminates any signature error if no feedback tap in MISR between bits \(Q_j \) and \(Q_{j+h} \).

Aliasing Theorems
- Theorem 15.1: Assuming that each circuit PO \(d_{ij} \) has probability \(p \) of being in error, and that all outputs \(d_{ij} \) are independent, in a \(k \)-bit MISR, \(P_{al} = 1/(2^k) \), regardless of initial condition of MISR. Not exactly true – true in practice.
- Theorem 15.2: Assuming that each PO \(d_{ij} \) has probability \(p_j \) of being in error, where the \(p_j \) probabilities are independent, and that all outputs \(d_{ij} \) are independent, in a \(k \)-bit MISR, \(P_{al} = 1/(2^k) \), regardless of the initial condition.