Objective

• Need to understand
 – Types of tests performed at different stages
 – *Automatic Test Equipment (ATE)* technology
 • Influences what tests are possible
 • Measurement limitations
 • Impact on cost
 – Parametric test

Types of Testing

• **Testing principle**
 – Apply inputs and compare “outputs” with the “expected outputs”

• **Verification testing**, or **design debug**
 – Verifies correctness of design and of test procedure
 – Usually requires correction to design

• **Characterization testing**
 – Used to characterize devices and performed through
 production life to improve the process

• **Manufacturing testing**
 – Factory testing of all manufactured chips for parametric faults
 and for random defects

• **Acceptance testing (incoming inspection)**
 – User (customer) tests purchased parts to ensure quality

Verification Testing

• Ferociously expensive
• Often a software approach
• But, may comprise:
 – Scanning Electron Microscope tests
 – Bright-Lite detection of defects
 – Electron beam testing
 – Artificial intelligence (expert system) methods
 – Repeated functional tests
Characterization Test

- Use of test structures
 - Special structures, placed on a wafer at strategic locations, are tested to characterize the process or to determine if testing of chips should proceed
- Worst-case test
 - Choose test that passes/fails chips
 - Select statistically significant sample of chips
 - Repeat test for combination of 2+ environmental variables
 - Plot results in Schmoo plot
 - Diagnose and correct design errors
- Continue throughout production life of chips
 - Improve design and process to increase yield

Schmoo Plot

Manufacturing Test

(Also called production test)

- Determines if manufactured chip meets specs
- Must cover high % of modeled faults
- Must minimize test time (to control cost)
- No fault diagnosis
- Tests every device on chip
- Test are functional or at speed of application or speed guaranteed by supplier

Burn-in or Stress Test

- Process:
 - Subject chips to high temperature & over-voltage supply, while running production tests
- Catches:
 - Infant mortality cases – these are damaged chips that will fail in the first 2 days of operation – causes bad devices to actually fail before chips are shipped to customers
 - Freak failures – devices having same failure mechanisms as reliable devices

Types of Manufacturing Tests

- Wafer sort or probe test – done before wafer is scribed and cut into chips
 - Includes test site characterization – specific test devices are checked with specific patterns to measure:
 - Gate threshold
 - Polysilicon field threshold
 - Poly sheet resistance, etc.
- Packaged device tests

Sub-types of Tests

- Parametric – measures electrical properties of pin electronics – delay, voltages, currents, etc. – fast and cheap
- Functional – used to cover very high % of modeled faults – test every transistor and wire in digital circuits – long and expensive – the focus of this course
Two Different Meanings of Functional Test

- *ATE and Manufacturing World* – any vectors applied to cover high % of faults during manufacturing test
- *Automatic Test-Pattern Generation World* – testing with verification vectors or vectors generated without structural information, which determine whether hardware matches its specification – typically have low fault coverage (~70 %)

Incoming Inspection

- Can be:
 - Similar to production testing
 - More comprehensive than production testing
 - Tuned to specific systems application
- Often done for a random sample of devices
 - Sample size depends on device quality and system reliability requirements
 - Avoids putting defective device in a system where cost of diagnosis exceeds incoming inspection cost

Electrical Parametric Testing

Typical tests

- **DC parametric test**
 - Probe test (wafer sort) – catches gross defects
 - Contact, power, open, short tests
 - Functional & layout-related test

- **AC parametric test**
 - Unacceptable voltage/current/delay at pin
 - Unacceptable device operation limits

DC Parametric Tests

Contact Test

1. Set all inputs to 0 V
2. Force current \(I_{fb}\) out of pin (expect \(I_{fb}\) to be 100 to 250 \(\mu\)A)
3. Measure pin voltage \(V_{pin}\). Calculate pin resistance \(R\)
 - Contact short \((R = 0 \Omega)\)
 - No problem
 - Pin open circuited \((R \text{ huge}), I_{fb}\) and \(V_{pin}\) large
Power Consumption Test

1. Set temperature to worst case, open circuit
 DUT outputs
2. Measure maximum device current drawn
 from supply \(I_{CC} \) at specified voltage
 \[I_{CC} < 70 \text{ mA (fails)} \]
 \[40 \text{ mA} < I_{CC} \leq 70 \text{ mA (ok)} \]

Output Short Current Test

1. Make chip output a 1
2. Short output pin to 0 V in PMU
3. Measure short current (but not for long, or
 the pin driver burns out)
 \[\text{Short current} > 40 \mu A \text{ (ok)} \]
 \[\text{Short current} \leq 40 \mu A \text{ (fails)} \]

Output Drive Current Test

1. Apply vector forcing pin to 0
2. Simultaneously force \(V_{OL} \) voltage and
 measure \(I_{OL} \)
3. Repeat Step 2 for logic 1
 \[I_{OL} < 2.1 \text{ mA (fails)} \]
 \[I_{OL} < -1 \text{ mA (fails)} \]

Threshold Test

1. For each I/P pin, write logic 0 followed by
 propagation pattern to output. Read output.
 Increase input voltage in 0.1 V steps until
 output value is wrong
2. Repeat process, but stepping down from logic
 1 by 0.1 V until output value fails
 \[\text{Wrong output when 0 input} > 0.8 \text{ V (ok)} \]
 \[\text{Wrong output when 0 input} = 0.8 \text{ V (fails)} \]
 \[\text{Wrong output when 1 input} < 2.0 \text{ V (ok)} \]
 \[\text{Wrong output when 1 input} = 2.0 \text{ V (fails)} \]

AC Parametric Tests

Rise/fall Time Tests
Set-up and Hold Time Tests

- **Set-up Time**
- **Hold Time**
- **Input Waveform**
- **Output Waveform**

Summary

- Discussed many “types of testing” but alternative ways of defining types of tests exist.
- **ATE** – need to understand.
- Parametric testing – DC and AC.
- Focus of the course – structure based manufacturing testing of ICs.

Test Specifications & Plan

- **Test Specifications:**
 - Functional Characteristics
 - Type of Device Under Test (DUT)
 - Physical Constraints – Package, pin numbers, etc.
 - Environmental Characteristics – supply, temperature, humidity, etc.
 - Reliability – acceptance quality level (defects/million), failure rate, etc.
- **Test plan generated from specifications:**
 - Type of test equipment to use
 - Types of tests
 - Fault coverage requirement.

Test Programming

- Device Specifications
- Architectural & Logic Design Verification & Test Generation
- Test Plan
- Vector Editor
- Test Program
- Physical Design
- Pin assignment, Width map, etc.

Propagation Delay Tests

1. Apply standard output pin load \((RC\) or \(RL\))
2. Apply input pulse with specific rise/fall.
3. Measure propagation delay from input to output:
 - Delay between 5 ns and 40 ns (ok).
 - Delay outside range (fails).

Automatic Test Equipment (ATE)
ADVANTEST Model T6682 ATE

T6682 ATE Specifications
- Uses 0.35 μm VLSI chips in implementation
- 1024 pin channels
- Speed: 250, 500, or 1000 MHz
- Timing accuracy: +/- 200 ps
- Drive voltage: -2.5 to 6 V
- Clock/strobe accuracy: +/- 870 ps
- Clock settling resolution: 31.25 ps
- Pattern multiplexing: write 2 patterns in one ATE cycle
- Pin multiplexing: use 2 pins to control 1 DUT pin

Response Checking and Frame Processor
- Response Checking:
 - Pulse train matching – ATE matches patterns on 1 pin for up to 16 cycles
 - Pattern matching mode – matches pattern on a number of pins in 1 cycle
 - Determines whether DUT output is correct, changes patterns in real time
- Frame Processor – combines DUT input stimulus from pattern generators with DUT output waveform comparison
- Strobe time – interval after pattern application when outputs sampled

T6682 ATE Block Diagram

Pattern Generation
- Sequential pattern generator (SQPG): stores 16 Mvectors of patterns to apply to DUT, vector width determined by # DUT pins
- Algorithmic pattern generator (ALPG): 32 independent address bits, 36 data bits
 - For memory test – has address descrambler
 - Has address failure memory
- Scan pattern generator (SCPG) supports JTAG boundary scan, greatly reduces test vector memory for full-scan testing
 - 2 Gvector or 8 Gvector sizes

Probing
- Pin electronics (PE) – electrical buffering circuits, put as close as possible to DUT
- Uses pogo pin connector at test head
- Test head interface through custom printed circuit board to wafer prober (unpackaged chip test) or package handler (packaged chip test), touches chips through a socket (contactor)
- Uses liquid cooling
- Can independently set V_{IH}, V_{IL}, V_{OH}, V_{OL}, I_{H}, I_{L}, V_T for each pin
- Parametric Measurement Unit (PMU)
Test Data Analysis
• Uses of ATE test data:
 – Reject bad DUTS
 – Fabrication process information
 – Design weakness information
• Devices that did not fail are good only if tests covered 100% of faults
• Failure mode analysis (FMA)
 – Diagnose reasons for device failure, and find design and process weaknesses
 – Allows improvement of logic & layout design rules

Probe Card and Probe Needles or Membrane
• Probe card – custom printed circuit board (PCB) on which DUT is mounted in socket – may contain custom measurement hardware (current test)
• Probe needles – come down and scratch the pads to stimulate/read pins
• Membrane probe – for unpackaged wafers – contacts printed on flexible membrane, pulled down onto wafer with compressed air to get wiping action

Multi-site Testing – Major Cost Reduction
• One ATE tests several (usually identical) devices at the same time
• For both probe and package test
• DUT interface board has > 1 sockets
• Add more instruments to ATE to handle multiple devices simultaneously
• Usually test 2 or 4 DUTS at a time, usually test 32 or 64 memory chips at a time
• Limits: # instruments available in ATE, type of handling equipment available for package