1. (10 points) (Bushnell and Agrawal) Problem 6.4
2. (15 points) (Bushnell and Agrawal) Problem 6.8
3. (10 points) (Bushnell and Agrawal) Problem 8.4
4. (15 points) (Bushnell and Agrawal) Problem 8.6
5. (15 points) (Bushnell and Agrawal) Problem 8.12
6. (15 points) The finite state machine $M7$ in Table 1 has a single input, a single output, and 5 states.

(a) Is this a strongly connected machine?

(b) Find a shortest synchronizing sequence for this machine. (To make grading easier, please designate the left branches of your tree correspond to Input = 0 for all trees in parts (b), (c), and (d).)

(c) Find a minimum length distinguishing sequence. Tabulate the output responses, initial and final states of applying your distinguishing sequence to the machine in each of the 5 starting states.

(d) Find a minimum length homing sequence which is different from the distinguishing sequence found in part (c).
Table 1: State Machine M_7 for Problem 6.

<table>
<thead>
<tr>
<th></th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A/1</td>
</tr>
<tr>
<td>B</td>
<td>E/0</td>
</tr>
<tr>
<td>C</td>
<td>C/1</td>
</tr>
<tr>
<td>D</td>
<td>D/1</td>
</tr>
<tr>
<td>E</td>
<td>E/0</td>
</tr>
</tbody>
</table>

7. (20 points) The finite state machine in Fig. 1 has a single input, a single output, and 5 states.

(a) Convert the state machine into a state transition table like the one given in Problem 6.

(b) Find a shortest **synchronizing sequence** for this machine.

(c) Find a minimum length **distinguishing sequence**. Tabulate the output responses, initial and final states of applying your distinguishing sequence to the machine in each of the 5 starting states.

(d) Design a **checking sequence** for this machine such that the total length of the sequence is small. Note that you can achieve this by choosing appropriate transfers while designing the checking sequence. You may use SS to denote the synchronizing sequence you found in part (a) and DS to denote distinguishing sequence you found in part (b). Likewise, you may use T_{ij} to denote transfer sequence from state i to state j. However, you have to clearly indicate what the sequences are in terms of inputs, and the states after the application of the sequences. In addition, also indicate the expected outputs whenever the outputs are to be observed.
Figure 1: State Diagram Figure for Problem 7.