Placement

Special thanks to: Jason Cong (UCLA) and C.K Koh (Purdue)

Placement

• Input to the placement:
 – A set of blocks with well-defined shapes
 – Pin locations
 – A netlist

• Objectives:
 – Minimize area
 – Reduce net length for critical nets
Consequences of Placement

Placement Problem Formulation

- No two rectangles overlap
- Placement is routable
- The total area of the rectangle bounding cells and routing regions is minimized
 - Very difficult to estimate
- The total wire length is minimized
Routing Estimate in Placement

Classification of Placement Algorithms

- Partitioning based algorithms
- Clustering based algorithms
- Simulation based algorithms
 - Simulated annealing
 - Simulated evolution (genetic algorithm)
 - Force-directed placement
- Analytical approaches
 - Quadratic programming
 - Resistive network optimization
- Performance-driven placement
Partitioning or Min-Cut Placement
[Breuer, DAC77]

- Make use of partitioning techniques
- Partition circuit alternately in the horizontal and vertical directions
- Use areas of sub-circuits to determine cutline on the chip, assign each sub-circuit on one side of cutline
- Stop when each sub-circuit has only one single gate
- Objective function:
 - Number of nets crossing the cutline
 - Weighted sum of wire length and cut number

Partitioning Algorithm
[Kernighan-Lin, Bell’70]

- Iterative improvement on an initial partition
- Starts with an arbitrary partition
- Find the i-th pair of unlocked vertices residing in different partitions whose exchange results in largest decrease or smallest increase in cut-cost
 - Mark the pair locked, and record the gain g_i
- Find k such that $\sum_{i=1..k} g_i$ is maximized
- If the overall gain is positive, interchange the first k pairs
- Repeat the process until no positive overall gain
Modeling Hypergraphs with Graphs

- Net as hypergraph, $H = (N, L)$
 - N: a set of terminals
 - L: a set of hyper-edges, L_i connects a subset N_i of vertices, with $|N_i| > 1$

- Approximation of hypergraphs with complete graphs
 - Weight assignment of each edge

\[\frac{4}{n^2 - \text{mod}(n,2)} \]

- Number of edges cut by bi-partitioning a complete graph of n nodes is at most

\[\frac{n^2 - \text{mod}(n,2)}{4} \]

Terminal Propagation
[Dunlop-Kernighan, TCAD’85]
Clustering-Based Placement

- Bottom-up method
- Selecting unplaced components and adding them to a partial placement
- Selection is based on how strongly the unplaced components are connected to the placed components
- Placement is based on how connection cost is reduced

Simulated Annealing
[Kirkpatrick-Gelatt-Vecchi, Science’83]

- Simulation of the annealing process used to temper metals
- Avoids getting trapped in local minima
- Starts with an initial placement
- Improvements made to initial placement by exchanging blocks
- Moves that decrease cost (C) are always accepted
- Moves that increase cost are accepted with a probability $e^{-\Delta C/T}$ depending on temperature T
TimberWolf
[Sechen, KAP’88]

• Most widely used placement package for standard cell design
• Move operations:
 – Displacement: randomly place a randomly chosen cell
 – Interchange: exchange two randomly chosen cells
• Temperature-dependent range limiter to restrict the distance over which a cell can move
 – The span decreases logarithmically with the temperature
 \[L_{\text{ww}}(T) = L_{\text{ww}}(T_i) \frac{\log T}{\log T_i}, \quad L_{\text{ww}}(T) = L_{\text{ww}}(T_i) \frac{\log T}{\log T_i} \]

TimberWolf (Cont’d)

• Cost function is a weighted sum of three components
 – Total wire lengths (or wire spans)
 – Total overlap
 – Actual row length
• Temperature schedule
 – At each temperature, a fixed number of moves per cell is allowed
 – Starts at a very high temperature to accept almost all moves
 – Cooling is represented by
 \[T_{i+1} = \alpha(T)T_i \]
Force-Directed Algorithms

• Number of connection between two modules is related to a force attracting them towards each other
 \[F_{ij} = -c_{ij} d_{ij} \]
 – \(c_{ij} \) is a weighted sum of the nets between the two modules
 – \(d_{ij} \) is the distance between centers of modules

• Repulsive force between modules to prevent overlapping

• An optimal placement is one that minimizes the sum of the force vectors acting on the modules

Force-Directed Construction

• Module \(M_j \) occupy \((x_j, y_j)\)

• Set x-component of the forces acting on \(M_0 \) to zero
 \[\sum_j F_{0,j}^x = \sum_j -c_{0,j} d_{o,j}^x = 0 \]

• Set y-component of the forces acting on \(M_0 \) to zero
 \[\sum_j F_{0,j}^y = \sum_j -c_{0,j} d_{o,j}^y = 0 \]

• If there are no modules with predetermined locations, then a trivial solution is obtained by placing the center of all modules at an arbitrary point
Force-Directed Interchange

- Find a module M with the maximum total force acting on it
- Compute the ideal location \((x, y)\) for M
- Move M to \((x, y)\)
- What about M' that occupies \((x, y)\) originally?
 - Move M' to the original location of M
 - Allow overlap of M and M', hopefully, the violation will be removed later on
- Do not move M too far, consider only its nearest horizontal, vertical, and diagonal neighbors in the direction of desired location

Force-Directed Relaxation

- Similar to force-directed interchange in calculation of force vector
- Move most unstable M to desired location \((x, y)\)
- Module M' that originally occupies \((x, y)\) is moved next
- Stop when a module is moved into an empty slot
- Compute the gain and accept the series of moves only if the placement improves
- Otherwise, reject the series and all components are returned to their previous positions
Force-Directed Pair-wise Interchange

- For every pair of modules calculate the reduction in total force when they are exchanged
- Swap the two modules with the largest reduction
- Lock the two swapped modules and do not consider them in the same iteration

Analytical Approach: Resistive Network

- Cost function is in terms of wire length
 \[
 \Phi(x, y) = \frac{1}{2} \sum_{i,j=1}^{n} c_{ij} \left[(x_i - x_j)^2 + (y_i - y_j)^2 \right]
 \]
- Connectivity matrix \(C = [c_{ij}] \)
- Indefinite admittance matrix \(B = D - C \), where \(D \) is a diagonal matrix \(d_{ii} = \sum_{j=1..n} c_{ij} \)
 \[
 \Phi(x, y) = x^T B x + y^T B y
 \]
- Only the one-dimensional problem needs to be considered because of the symmetry between \(x \) and \(y \)
Resistive Network Optimization

- Interpret the objective function $x^T B x$ as the power dissipation of an n-node linear resistive network
- Vector x corresponds to the voltage vector
- $x = [x_1 \ x_2]^T$, x_1 is of dimension m and is to be determined, x_2 is due to the fixed I/O pads
- Placement problem is equivalent to that of choosing voltage vector for which power is a minimum

$$B_{11}x_1 + B_{12}x_2 = 0$$
$$B_{21}x_1 + B_{22}x_2 = i_2$$

Solving a Linear Algebraic Problem

- Solve for
 $$Ax_i = b$$
 $$A \equiv B_{11}, b \equiv -B_{12}x_2$$
- Successive Over-Relaxation method (generalized Gauss-Seidel method): preserve sparsity, convergence guaranteed as A is real, symmetric, positive definite, and diagonally dominant

$$A = \Lambda(L + I + U)$$
$$x_i(k + 1) = Mx_i(k) + a$$
$$M = (I + wL)^{-1}[(1 - w)I - wU]$$
$$a = \Lambda^{-1}b$$
Placement and Partitioning

- Linear placement can achieve partitioning
- Add module areas from left to right until roughly half of the total area, that defines cut-line
- Make modules to the right of cut-line fixed, modules to the left of cut-line movable
- Project fixed modules to center-line
- Perform global placement in the left-plane (of center-line)

Placement and Partitioning (Cont’d)

- Make all modules in the left-plane fixed, project to the center line
- Make modules to the right of cut-line movables
- Perform global placement in the right-plane
- Proceed with horizontal cuts on each half
- Continue until each block contains one and only module
- PROUD-2: two-way partitioning in one step
- PROUD-4: four-way partitionings in one step
 - Run-time is 50% longer
 - Wirelength smaller by two to five percent
Mathematical Interpretation

- Equivalent to Block Gauss-Seidel (BGS) method
- Assume a horizontal cut, partition \(y_1 \) into \(y_{1a}, y_{1b} \)

\[
\begin{align*}
A_{11}y_{1a} + A_{12}y_{1b} &= b_1 \\
A_{21}y_{1a} + A_{22}y_{1b} &= b_2 \\
y_{1a} &= A_{11}^{-1} \left[b_1 - A_{12}y_{1b}^* \right] \\
y_{1b} &= A_{22}^{-1} \left[b_2 - A_{21}y_{1a}^* \right]
\end{align*}
\]

- \(y_{1a}^* \) and \(y_{1b}^* \) are perturbed solution from \(y_{1a} \) and \(y_{1b} \) because of the partitioning process

GORDIAN: Quadratic Programming

- Cost function is in terms of wire length
 \[
 \Phi(x, y) = x^T B x + y^T B y
 \]
- Split modules into movable and fixed, consider only movable modules
 \[
 \Phi(x, y) = x^T B' x + d^T x
 \]
- Top-down partitioning and placement, use center of region to generate linear constraints for the global placement problem
 - At \(l \)-th level of optimization, divide the placement area in \(q \leq 2^l \) regions
 \[
 A^{(l)} x = u^{(l)}
 \]
Linear Constraints

\[
A(t) = \begin{bmatrix}
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
* & * & * & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & * & * & * & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{bmatrix}
\]

\[
\rho' = \begin{bmatrix}
0 & 0 & 0 & * & * & * & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{bmatrix}
\]

\[
d_{p\mu}^{(t)} = \begin{cases}
\frac{F_u}{\sum_{u \in M_p} F_u} & \text{if } \mu \in M_p \\
0 & \text{otherwise}
\end{cases}
\]

LQP: \(\min_x \{ \Phi(x) = x^T B' x + d^{(t)}_x \ | \ A^{(t)} x = u^{(t)} \} \)

Unconstrained Quadratic Programming

- Linear equality constraint restrict the freedom of movement of modules to a \((m-q)\)-dimensional subspace
- In each region, one (dependent) module has to be moved such that the center-of-gravity constraint is satisfied, the rest (independent) are free to move anywhere

\[
x = \begin{bmatrix}
x_{d<q} \\
x_{i<m-q}
\end{bmatrix}
\]

A\(^{(t)}\) = \(D_{<q<q} E_{<q<m-q} \)

- \(D \) is chosen to be a diagonal matrix, taking biggest entry of each row of \(A \)
Unconstrained Quadratic Programming (Cont’d)

\[
\begin{align*}
x_d &= -D^{-1}E x_i + D^{-1} u \\
x &= Zx_i + x_0 \\
Z &= \begin{bmatrix} -D^{-1}E \\ I \end{bmatrix} \quad \text{and} \quad x_0 = \begin{bmatrix} D^{-1}u \\ 0 \end{bmatrix}
\end{align*}
\]

\[
\text{UQP: } \min_x \left\{ \Psi(x) = x_i^T Z^T B' Z x_i + (B' x_0 + d_a)^T Z x_i \right\}
\]

Solve for \(Z^T B' Z x_i^* = -(B' x_0 + d_a)^T Z \)

- \(Z^T B' Z \) can be dense, and direct solvers or iterative methods which need the matrix are impractical
- Conjugate-Gradient method is well-suited

Partitioning Schemes

- Use global solution to partition a region evenly
- Trade-off balance partitioning for cut size, also use min cut size to determine cut direction
- Improve partitioning by module interchange
- Repartitioning after each global optimization
 - Large overlap of modules belonging to different son regions indicates a bad partitioning
 - Modules in region \(\rho \) migrates to \(\rho' \) and from \(\rho' \) to \(\rho \)
 - Repartition based on new global placement usually results in a better module to region assignment