Interconnect Modeling & Analysis
Time Moments of Impulse Response $h(t)$

- Definition of moments

 \[h(t) \xrightarrow{L} H(s) \]

 \[
 H(s) = \int_0^\infty h(t)e^{-st} \, dt = \int_0^\infty h(t) \left(\sum_{i=0}^{\infty} \frac{1}{i!} (-st)^i \right) \, dt
 \]

 \[
 = \sum_{i=0}^{\infty} \frac{1}{i!} (-s)^i \int_0^\infty h(t) \cdot t^i \, dt
 \]

 \[i\text{-th moment } m_i = \frac{1}{i!} (-1)^i \int_0^\infty h(t) \cdot t^i \, dt \]

- Note that m_1 = Elmore delay when $h(t)$ is monotone voltage response of impulse input
Derivatives of $h(t)$

- $H(s)$ can be expressed as a rational transfer function

$$H(s) = \sum_{j=1}^{N} \frac{k_j}{s - p_j}$$

- Expand $H(s)$ around $s \to \infty$

$$H(s) = h(0)s^{-1} + h^{(1)}(0)s^{-2} + \cdots + h^{(j)}(0)s^{-(j+1)} + \cdots$$

$$= \sum_{j=-\infty}^{\infty} -m_j s^j$$

Hint: \[L\left(\frac{d^n h(t)}{dt^n}\right) = s^n H(s) - s^{n-1} h(0^-) - \cdots - s^{n-2} h^{(2)}(0^-) - h^{n-1}(0^-) \]
q-th Pade Approximation

- Pade approximation of type (p/q):

\[
H_{p,q}(s) = \frac{b_p s^p + \cdots + b_1 s + b_0}{a_q s^q + \cdots + a_1 s + 1}
\]

\[= H(s) + O(s^{p+q+1})\]

- q-th Pade approximation ($q \ll N$):

\[
H_q(s) \equiv H_{q-1,q}(s) = \sum_{j=1}^{q} \frac{k_j}{s - p_j}
\]

- Formulate $2q$ constraints by matching $2q$ moments to compute k_i's & p_i's
General Moment Matching Technique

• Basic idea: match the moments $m_{-(2q-r)}$, \ldots, m_{-1}, m_0, m_1, \ldots, m_{r-1}

$$\hat{H}(s) = \frac{k_1}{s-p_1} + \frac{k_2}{s-p_2} + \cdots + \frac{k_q}{s-p_q}$$

$$= m_0 + m_1 s + \cdots + m_{r-1} s^{r-1} + O(s^r)$$

$$= -m_{-1} s^{-1} - \cdots - m_{-(2q-r)} s^{-(2q-r)} - O(s^{-(2q-r+1)})$$

• When $r = 2q-1$:
 (i) initial condition matches, i.e.
 $$\hat{h}(0^+) = h(0^+), \quad \text{or} \quad \lim_{s \to \infty} s \hat{H}(s) = \lim_{s \to \infty} s H(s)$$
 or $$(-\hat{m}_{-1} = -m_{-1})$$
 (ii) $\hat{m}_k = m_k$ for $k = 0, 1, \ldots, 2q - 2$
Compute Residues & Poles

\[\frac{k_i}{s - p_i} = -\frac{k_i}{1 - s/p_i} = -\frac{k_i}{p_i} \sum_{j=0}^{\infty} \left(\frac{s}{p_i} \right)^j \]

\[\begin{aligned}
&\begin{aligned}
&k_1 + k_2 + \cdots + k_q = h(0) = -m_{-1} \\
&\left(-\frac{k_1}{p_1} + \frac{k_2}{p_2} + \cdots + \frac{k_q}{p_q} \right) = m_0 \\
&\left(-\frac{k_1}{p_1^2} + \frac{k_2}{p_2^2} + \cdots + \frac{k_q}{p_q^2} \right) = m_1 \\
&\vdots \\
&\left(-\frac{k_1}{p_1^{2q-1}} + \frac{k_2}{p_2^{2q-1}} + \cdots + \frac{k_q}{p_q^{2q-1}} \right) = m_{2q-2}
\end{aligned}
\end{aligned} \]

\[(= \lim_{s \to \infty} s \hat{H}(s)) \]

initial condition

match first 2q-1 moments

EQ1

condition initial
Basic Steps for Moment Matching

Step 1: Compute $2q$ moments m_{-1}, m_0, m_1, …, $m_{(2q-2)}$ of $H(s)$

Step 2: Solve $2q$ non-linear equations of EQ1 to get

$p_1, p_2, \cdots, p_q : \text{poles}$

$k_1, k_2, \cdots, k_q : \text{residues}$

Step 3: Get approximate waveform

$$\hat{h}(t) = k_1 e^{p_1 t} + k_2 e^{p_2 t} + \cdots + k_q e^{p_q t}$$

Step 4: Increase q and repeat 1-4, if necessary, for better accuracy
Components of Moment Matching Model

• Moment computation
 – Iterative DC analysis on transformed equivalent DC circuit
 – Recursive computation based on tree traversal
 – Incremental moment computation

• Moment matching methods
 – Asymptotic Waveform Evaluation (AWE) [Pillage-Rohrer, TCAD’90]
 – 2-pole method [Horowitz, 1984] [Gao-Zhou, ISCAS’93]...
Basis of Moment Computation by DC Analysis

• Applicable to general RLC networks

• Used in Asymptotic Waveform Evaluation (AWE) [Pillage-Rohrer, TCAD’90]

• Represent a lumped, linear, time-invariant circuit by a system of first-order differential equations:

\[C\dot{x} = -Gx + bu \]

\[y = l^T x \]

where \(x \) represents circuit variables (currents and voltages)

\(G \) represents memoryless elements (resistors)

\(C \) represents memory elements (capacitors and inductors)

\(bu \) represents excitations from independent sources

\(y \) is the output of interest
Transfer Function

- Assume zero initial conditions and perform Laplace transform:
 \[sCX = -GX + bU\]
 \[Y = l^T X\]
 where \(X, U, Y\) denote Laplace transform of \(x, u, y\), respectively

- Transfer function:
 \[H(s) = Y(s)/U(s) = l^T (G + sC)^{-1}b\]

- Let \(s = s_0 + \sigma\), where \(s_0\) is an arbitrary, but fixed expansion point such that \(G+s_0C\) is non-singular
 \[H(s_0 + \sigma) = l^T (I - \sigma A)^{-1}r\]
 where \(A = -(G + s_0 C)^{-1}C\), \(r = (G + s_0 C)^{-1}b\)
Taylor Expansion and Moments

• Expansion of $H(s)$ about $\sigma = 0$:

$$H(s_0 + \sigma) = l^T (I + \sigma A + \sigma^2 A^2 + \cdots) r$$

$$= \sum_{k=0}^{\infty} m_k \sigma^k \quad \text{where} \quad m_k = l^T A^k r$$

• Recursive moment computation:

$$u_0 = r$$

$$u_1 = Ar$$

$$u_2 = A^2 r$$

$$\vdots$$

$$\implies (G + s_0 C) u_0 = b \iff u_0 = (G + s_0 C)^{-1} b$$

$$-(G + s_0 C) u_k = C u_{k-1} \quad k = 1, 2, \ldots$$
Taylor Expansion and Moments (Cont’d)

• Expansion of $H(s)$ around $\sigma \to \infty$

$$H(s_0 + \sigma) = l^T (-\sigma^{-1} A^{-1})(I + \sigma^{-1} A^{-1} + \sigma^{-2} A^{-2} + \cdots)r$$

$$= \sum_{k=-1}^{\infty} -m_k \sigma^k \quad \text{where } m_k = l^T A^k r$$

• Recursive moment computation:

$$u_0 = r$$

$$u_{-1} = A^{-1} r$$

$$u_{-2} = A^{-2} r$$

$$\vdots$$

$$\implies (G + s_0 C)u_0 = b \iff u_0 = (G + s_0 C)^{-1} b$$

$$Cu_k = -(G - s_0 C)u_{k+1} \quad k = -1, -2, \ldots$$
Interpretation of Moment Computation

- Compute: \(u_0 = (G + s_0 C)^{-1} b \)
- When \(s_0 = 0 \), equivalent to DC analysis:
 - setting \(\dot{x} = 0 \), shorting inductors (0V) and opening capacitors (0A)
 - compute currents through inductors and voltages across capacitors as moments

- Convert: Inductor \(\rightarrow \) Voltage source
 Capacitor \(\rightarrow \) Current source

![Diagram showing the conversion of inductor to voltage source and capacitor to current source]
Interpretation of Moment Computation (Cont’d)

• Compute: \(- (G + s_0 C)u_1 = Cu_0\)

• When \(s_0 = 0\), equivalent to DC analysis:
 - setting \(x = u_0\), voltage sources of inductor \(L = Lm_L\), current sources of capacitor \(C = Cm_C\)
 - external excitations = 0
 - compute currents through inductors and voltages across capacitors as moments

• Convert: Inductor \(\rightarrow\) Voltage source
 Capacitor \(\rightarrow\) Current source

\[V_{in} \quad L_2 \quad L_1 \quad C_2 \quad C_1 \]
\[0V \quad \pm \]

\[L_2 m_{L_2} \quad L_1 m_{L_1} \quad C_2 m_{C_2} \quad C_1 m_{C_1} \]
Interpretation of Moment Computation (Cont’d)

- Compute: \(Cu_{-1} = -(G + s_0 C)u_0 \)
- When \(s_0 = 0 \), equivalent to DC analysis:
 - setting \(x = u_0 \), moments as currents through inductors and voltages across capacitors
 - external excitations = 0
 - compute voltage sources of inductors and current sources of capacitors
- Convert: Inductor \(\rightarrow \) Voltage source
 Capacitor \(\rightarrow \) Current source
Moment Computation by DC Analysis

- Perform DC analysis to compute the \((i+1)\)-th order moments

 voltage across \(C_j\) => the \((i+1)\)-th order moment of \(C_j\)

 current across \(L_j\) => the \((i+1)\)-th order moment of \(L_j\)

- DC analysis:
 - modified nodal analysis (used in original AWE)
 - sparse-tableau
 -

- Time complexity to compute moments up to the \(p\)-th order:
 \[p \times \text{time complexity of DC analysis} \]
Advantage and Disadvantage of Moment Computation by DC Analysis

- Recursive computation of vectors u_k is efficient since the matrix $(G+s_0C)$ is LU-factored exactly once.

- Computation of u_k corresponds to vector iteration with matrix A:
 - Converges to an eigenvector corresponding to an eigenvalue of A with largest absolute value.
Moment Computation for RLC Trees

- Most interconnects are RLC trees
- Exploit special structure of G and C matrices to compute moments
- Two basic approaches:
 - Recursive moment computation [Yu-Kuh, TVLSI’95]
 - Incremental moment computation [Cong-Koh, ICCAD’97]
- Both papers used a slightly different definition of moment
 \[m_i = \frac{1}{i!} \int_0^\infty h(t) \cdot t^i \, dt \]
- We continue to use the same definition as before
 \[m_i = \frac{(-1)^i}{i!} \int_0^\infty h(t) \cdot t^i \, dt \]
Basis of Moment Computation for RLC Trees

- Wire segment modeled as lumped RLC element
- Definition:
 \[T_k = \text{subtree rooted at node } k \]
 \[\bar{k} = \text{parent node of node } k \]
 \[R_k = \text{resistance between nodes } \bar{k} \text{ and } k \]
 \[L_k = \text{inductance between nodes } \bar{k} \text{ and } k \]
 \[C_k = \text{capacitance at node } k \]
 \[i_k = \text{current from } \bar{k} \text{ to } k \]
 \[I_k(s) = \text{Laplace transform of } i_k \]
 \[v_k = \text{voltage across } C_k \]
 \[V_k(s) = \text{Laplace transform of } v_k \]
 \[m^p_k = p\text{-th order moment of node } k \]
Transfer Function for RLC Trees

• Apply KCL at node k: $I_k(s) = \sum_{j \in T_k} C_j s V_j(s)$

• Let $P_k = \text{path from root to node } k$

 $P_{jk} = P_j \cap P_k$

 $R_{jk} = \text{total resistance on path } P_{jk}$

 $L_{jk} = \text{total inductance on path } P_{jk}$

 $Z_{ik} = R_{jk} + sL_{jk}$

• Voltage drop from root to node i: $V_{in}(s) - V_i(s) = \sum_{k \in P_i} (R_k + sL_k) \sum_{j \in T_k} C_j s V_j(s)$

 $= \sum_k Z_{ik} C_k s V_k(s)$

• Transfer function: $H_i(s) = 1 - \sum_k Z_{ik} C_k s H_k(s)$
Recursive Formula for Moments

• Transfer function: \(H_i(s) = 1 - \sum_{k} Z_{ik} C_k s H_k(s) \)

• Expanding \(H_i(s) \), \(H_k(s) \) into Taylor series:
 \[
 1 + \sum_{j=1}^{\infty} m_i^j s^j = 1 - \sum_{k} s R_{ik} C_k - \sum_{j=2}^{\infty} s^j \sum_{k} (R_{ik} C_k m_k^{j-1} + L_{ik} C_k m_k^{j-2})
 \]

• Define \(p \)-th order weighted capacitance of \(C_k \): \(C_k^p = m_k^p C_k \)

• Recursive formula for moments:
 \[
 m_i^p = \begin{cases}
 0 & \text{if } p = -1 \\
 1 & \text{if } p = 0 \\
 -\sum_{k} (R_{ik} C_k^{p-1} + L_{ik} C_k^{p-2}) & \text{if } p \geq 1
 \end{cases}
 \]
Recursive Formula for Moments (Cont’d)

- Define p-th order weighted capacitance in subtree T_k
 \[C_{T_k}^p = \sum_{j \in T_k} m_j^p C_j \]

- Can show that:
 \[m_k^p = \begin{cases}
 0 & \text{if } p = -1 \\
 1 & \text{if } p = 0 \\
 0 & \text{if } p \geq 1 \text{ and } k = \text{root} \\
 m_k^p - (R_k C_{T_k}^{p-1} + L_k C_{T_k}^{p-2}) & \text{if } p \geq 1 \text{ and } k \neq \text{root}
\end{cases} \]

- Equivalently:
 \[m_k^p = -\sum_{j \in P_k} (R_j C_{T_j}^{p-1} + L_j C_{T_j}^{p-2}) \]

- Similarity with definition of Elmore delay
Recursive Moment Computation for RLC Trees

[Yu-Kuh, TVLSI’95]

- Initialize (-1)-th and 0-th order moments
- Compute moments from order 1 to order \(p \) successively
- Bottom-up tree traversal phase: \(O(n) \) for \(n \) nodes
 - Compute all \(p \)-th order weighted capacitance \(C_k m_k^p \)
 - Compute the \(p \)-th order weighted capacitance in subtree \(T_k \)

\[
C_{T_k}^p = \sum_{j \in T_k} C_k m_k^p
\]

- Top-down tree traversal phase; \(O(n) \) for \(n \) nodes
 - Compute the moment at each capacitor node \(k \)

\[
m_k^{p+1} = m_k^{p+1} - (R_k C_{T_k}^p + L_k C_{T_k}^{p-1})
\]

- Time complexity to compute moments up to the \(p \)-th order = \(O(np) \)
Incremental Moment Computation
[Cong-Koh, ICCAD’97]

- Iterative tree traversal approaches such as [Kuh-Yu, TVLSI’95] assume a static tree topology
 - More suitable for interconnect analysis
 - Not suitable for tree topology optimization
 - After each modification of tree topology, need to recompute all p-th order moments

- Incremental updates of sink moments
 - More suitable for tree optimization algorithm that construct topology in a bottom-up fashion
 - As we modify the tree topology, update the transfer function $H_i(s)$ for sink s_i incrementally
Basis for Bottom-Up Moment Computation

- Consider the computation of moments for sink w
- Assume sink w is originally in subtree T_v
- Merge subtree T_v with another subtree and the new tree is rooted at node u
- Definition:

 $m_k^p = p$ - th order moment of node k in original subtree T_v
 $C_{T_k}^p = p$ - th order weighted capacitance of subtree T_k in original subtree T_v

 $H_{v-k}(s) = \text{transfer function of node } k \text{ in original subtree } T_v$
 $ar{m}_k^p = p$ - th order moment of node k in new subtree T_u
 $\bar{C}_{T_k}^p = p$ - th order weighted capacitance of subtree T_k
 in new subtree T_u
 $\bar{H}_{u-k}(s) = \text{transfer function of node } k \text{ in new subtree } T_u$
Bottom-Up Moment Computation

- Maintain transfer function $H_{v-w}(s)$ for sink w in subtree T_v, and moment-weighted capacitance of subtree:

 \[m^j_w \text{ for } j = 0 \ldots p, \quad C^j_{T_v} \text{ for } j = 0 \ldots p - 1 \]

- As we merge subtrees, compute new transfer function $\overline{H}_{u-v}(s)$ and weighted capacitance recursively:

 \[
 \overline{C}^{j-1}_{T_v} = \overline{m}^{j-1}_v C^j_v + \sum_{q=0}^{j-1} \overline{m}^{j-1-q}_v C^q_{T_v},
 \]

 \[
 \overline{m}^j_v = -(R_v \overline{C}^{j-1}_{T_v} + L_v \overline{C}^{j-2}_{T_v}) \text{ for } j = 1 \ldots p
 \]

- New transfer function for node w

 \[
 \overline{H}_{u-w}(s) = \overline{H}_{u-v}(s) \times H_{v-w}(s)
 \]

 \[
 \overline{m}^j_w = \sum_{q=0}^{j} \overline{m}^{j-q}_v m^q_w \text{ for } j = 0 \ldots p
 \]

- New moment-weighted capacitance of T_u:

 \[
 \overline{C}^j_{T_u} = \sum_{v \in \text{child}(u)} \overline{C}^j_{T_v} \text{ for } j = 0 \ldots p - 1
 \]
Complexity Analysis of Incremental Moment Computation

- Assume topology has n nodes
- Complexity due to each edge: $O(p^2)$
- Total time complexity: $O(np^2)$
- If there are k nodes of interest, time complexity = $O(knp^2)$
Moment Matching by AWE
[Pillage-Rohrer, TCAD’90]

• Recall the transfer function obtained from a linear circuit
 - Let $s = s_0 + \sigma$, where s_0 is an arbitrary, but fixed expansion point such that $G + s_0 C$ is non-singular
 \[
 H(s_0 + \sigma) = \mathbf{l}^T (I - \sigma \mathbf{A})^{-1} \mathbf{r}
 \]
 where $\mathbf{A} = -(G + s_0 C)^{-1} C$, \quad $\mathbf{r} = (G + s_0 C)^{-1} \mathbf{b}$

• When matrix \mathbf{A} is diagonalizable
 \[
 \mathbf{A} = \mathbf{S} \Lambda \mathbf{S}^{-1} \quad \Lambda = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_N)
 \]
 \[
 H(s_0 + \sigma) = \mathbf{l}^T \mathbf{S} (I - \sigma \Lambda)^{-1} \mathbf{S}^{-1} \mathbf{r}
 \]
 \[
 = \mathbf{f}^T \mathbf{g}
 \]

\[
\therefore H(s_0 + \sigma) = \sum_{j=1}^{N} \frac{f_j g_j}{1 - \sigma \lambda_j} \quad \lambda_j: \text{reciprocal of pole}
\]
q-th Pade Approximation

- Pade approximation of type \((p/q)\):
 \[
 H_{p,q}(s_0 + \sigma) = \frac{b_p \sigma^p + \cdots + b_1 \sigma + b_0}{a_q \sigma^q + \cdots + a_1 \sigma + 1}
 = H(s_0 + \sigma) + O(\sigma^{p+q+1})
 \]

- \(q\)-th Pade approximation \((q \ll N)\):
 \[
 H_q(s_0 + \sigma) \equiv H_{q-1,q} = \sum_{j=1}^{q} \frac{k_j}{\sigma - p_j}
 \]

- Equivalent to finding a reduced-order matrix \(A_R\) such that eigenvalues \(\lambda_j\) of \(A_R\) are reciprocals of the approximating poles \(p_j\) for the original system
Asymptotic Waveform Evaluation

• Recall EQ1:
 $-(k_1 + k_2 + \cdots + k_q) = -h(0) = m_{-1}$

 $-(\frac{k_1}{p_1} + \frac{k_2}{p_2} + \cdots + \frac{k_q}{p_q}) = m_0$

 $-(\frac{k_1}{p_1^2} + \frac{k_2}{p_2^2} + \cdots + \frac{k_q}{p_q^2}) = m_1$

 \vdots

 $-(\frac{k_1}{p_1^{2q-1}} + \frac{k_2}{p_2^{2q-1}} + \cdots + \frac{k_q}{p_q^{2q-1}}) = m_{2q-2}$

• Let $\lambda_j = 1/p_j$

 $V_j = [1 \quad \lambda_j \quad \lambda_j^2 \quad \cdots \quad \lambda_j^{q-1}]^T$

 $V = [V_1 \quad V_2 \quad \cdots \quad V_q]$

 $\Lambda = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_q)$
Asymptotic Waveform Evaluation (Cont’d)

• Rewrite EQ1: \(-Vk = m_l\)
 \(-V\Lambda^q k = m_h\)

where \(k = [k_1 \ k_2 \ \ldots \ k_q]^T\)

\[m_l = [m_{-1} \ m_0 \ \ldots \ m_{q-2}]^T\]

\[m_h = [m_{q-1} \ k_q \ \ldots \ k_{2q-2}]^T\]

• Solving for \(k\): \(k = -V^{-1} m_l\)

\(V\Lambda^q V^{-1} m_l = m_h\)

• Let \(A_R = V\Lambda V^{-1}\)

\(\therefore A_R^q m_l = m_h\)

→ Need to compute all the poles first
Structure of Matrix A_R

- Matrix:
 $$\begin{bmatrix}
 0 & 1 & 0 & \cdots & 0 \\
 0 & 0 & 1 & \cdots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & 0 & \cdots & 1 \\
 -a_q & -a_{q-1} & -a_{q-2} & \cdots & -a_1
 \end{bmatrix}$$

 has characteristic equation:
 $$\lambda^q + a_1\lambda^{q-1} + \cdots + a_{q-1}\lambda + a_q = 0$$

 Eigenvalue λ_j has eigenvector $[1 \ \lambda_j \ \lambda_j^2 \ \cdots \ \lambda_j^{q-1}]^T$

- Therefore, A_R could be a matrix of the above structure

- Note that: $\lambda = 1/\sigma$

 Characteristic equation becomes the denominator of $H_q(s)$:
 $$1 + a_1\sigma + \cdots + a_{q-1}\sigma^{q-1} + a_q\sigma^q = 0$$
Solving for Matrix A_R

- Consider multiplications of A_R on m_l

$$
\begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-a_q & -a_{q-1} & -a_{q-2} & \cdots & -a_1
\end{bmatrix}
\begin{bmatrix}
m_{-1} \\
m_0 \\
\vdots \\
m_{q-3} \\
m_{q-2}
\end{bmatrix}
=
\begin{bmatrix}
m_0 \\
m_1 \\
\vdots \\
m_{q-3} \\
m_{q-2}
\end{bmatrix}
$$

produces

$$m'_{q-1} = -a_q m_{-1} - a_{q-1} m_0 - a_{q-2} m_1 - \cdots - a_1 m_{q-2}$$

$$A_R^2 m_l =
\begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-a_q & -a_{q-1} & -a_{q-2} & \cdots & -a_1
\end{bmatrix}
\begin{bmatrix}
m_0 \\
m_1 \\
\vdots \\
m_{q-2} \\
m_{q-1}
\end{bmatrix}
=
\begin{bmatrix}
m_0 \\
m_1 \\
\vdots \\
m_{q-2} \\
m_{q-1}
\end{bmatrix}
$$

produces

$$m'_q = -a_q m_0 - a_{q-1} m_1 - a_{q-2} m_2 - \cdots - a_1 m'_{q-1}$$
Solving for Matrix A_R (Cont’d)

- After q multiplications of A_R on m_l

$$A_R^q m_l = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_q & -a_{q-1} & -a_{q-2} & \cdots & -a_1 \end{bmatrix} \begin{bmatrix} m_{q-2} \\ m'_{q-1} \\ m_{q-1} \\ m_{2q-4} \\ m'_{2q-3} \end{bmatrix} = \begin{bmatrix} m'_{q-1} \\ m'_q \\ m'_{2q-3} \\ m'_{2q-2} \end{bmatrix} = m_h$$

produces $m'_{q-2} = -a_q m_{q-2} - a_{q-1} m'_{q-1} - a_{q-2} m'_q - \cdots - a_1 m'_{2q-3}$

- Equating m' with m:

$$\begin{bmatrix} m_{-1} & m_0 & m_1 & \cdots & m_{q-2} \\ m_0 & m_1 & m_2 & \cdots & m_{q-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ m_{q-3} & m_{q-2} & m_{q-1} & \cdots & m_{2q-4} \\ m_{q-2} & m_{q-1} & m_q & \cdots & m_{2q-3} \end{bmatrix} \begin{bmatrix} -a_q \\ -a_{q-1} \\ \vdots \\ -a_2 \\ -a_1 \end{bmatrix} = \begin{bmatrix} m'_{q-1} \\ m'_q \\ \vdots \\ m'_{2q-3} \\ m'_{2q-2} \end{bmatrix}$$
Summary of AWE

Step 1: Compute \(2q\) moments, choice of \(q\) depends on accuracy requirement; in practice, \(q \leq 5\) is frequently used

Step 2: Solve a system of linear equations by Gaussian elimination to get \(a_j\)

\[
\begin{bmatrix}
m_{-1} & m_0 & m_1 & \cdots & m_{q-2} \\
m_0 & m_1 & m_2 & \cdots & m_{q-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
m_{q-3} & m_{q-2} & m_{q-1} & \cdots & m_{2q-4} \\
m_{q-2} & m_{q-1} & m_q & \cdots & m_{2q-3}
\end{bmatrix}
\begin{bmatrix}
-a_q \\
-a_{q-1} \\
\vdots \\
-a_2 \\
-a_1
\end{bmatrix}
= \begin{bmatrix}
m_{q-1} \\
m_q \\
\vdots \\
m_{2q-3} \\
m_{2q-2}
\end{bmatrix}
\]

Step 3: Solve the characteristic equation of \(A_R\) to determine the approximate poles \(p_j\)

\[
\lambda^q + a_1 \lambda^{q-1} + \cdots + a_{q-1} \lambda + a_q = 0
\]

Step 4: Solve for residues \(k_j\)

\[
k = -V^{-1}m_l
\]
Numerical Limitations of AWE

- Due to recursive computation of moments
 - Converges to an eigenvector corresponding to an eigenvalue of matrix A with largest absolute value
 - Moment matrix used in AWE becomes rapidly ill-conditioned
 - Increasing number of poles does not improve accuracy
 - Unable to estimate the accuracy of the approximating model
- Remedial techniques are sometimes heuristic, hard to apply automatically, and may be computationally expensive
Pade Approximation via Lanczos Method (PVL)
[Feldmann-Freund, TCAD’95]

• Basic idea of non-symmetric Lanczos method:
 – Consider the right and left Krylov subspaces
 Right Krylov subspace = \(K_q(v_1, A) = \text{span}\{v_1, Av_1, \ldots, A^{q-1}v_1\} \)
 Left Krylov subspace = \(K_q(w_1, A^T) = \text{span}\{w_1, A^Tw_1, \ldots, (A^T)^{q-1}w_1\} \)
 – Apply Lanczos recursion to generate for \(j = 2 \ldots q \):
 • Two sequences of bi-orthogonal basis vectors for left and right
 Krylov subspaces \(K_j(v_1, A) \) and \(K_j(w_1, A^T) \), respectively
 • A sequence of non-symmetric tridiagonal Lanczos matrices \(T_j \)
 which are matrix representation of bi-orthogonal projection of \(A \)
 onto \(K_j(v_1, A) \) and \(K_j(w_1, A^T) \)
 • Eigenvalues of \(T_j \) approximate those of the given matrix \(A \)

• Advantages:
 – Avoid direct computation of moments
 – Numerically robust for higher-order Pade approximation
Non-symmetric Lanczos Method

Step 0: Set $\rho_1 = \| r \|_2$, $\eta_1 = \| l \|_2$, $v_1 = r / \rho_1$, and $w_1 = 1 / \eta_1$

Set $v_0 = w_0 = 0$ and $\delta_0 = 0$

For $n = 1, 2, \ldots, q$ do:

Step 1: Compute $\delta_n = w_n^T v_n$

Step 2: Set $\alpha_n = \frac{w_n^T A v_n}{\delta_n}$, $\beta_n = \frac{\delta_n}{\delta_{n-1}} \eta_n$, $\gamma_n = \frac{\delta_n}{\delta_{n-1}} \rho_n$

Step 3: Set $\hat{v}_{n+1} = A v_n - v_n \alpha_n - v_{n-1} \beta_n$

$\hat{w}_{n+1} = A^T w_n - w_n \alpha_n - w_{n-1} \gamma_n$

Step 4: Set $\rho_{n+1} = \| \hat{v}_{n+1} \|_2$, $\eta_{n+1} = \| \hat{w}_{n+1} \|_2$, and

$v_{n+1} = \frac{\hat{v}_{n+1}}{\rho_{n+1}}$, $w_{n+1} = \frac{\hat{w}_{n+1}}{\eta_{n+1}}$
Remarks on Lanczos Method

• Breakdown will occur if one encounters $\delta_n = 0$
• Division by nonzero yet small number δ_n may result in numerical instability
• Problems can be remedied by using a so-called look-ahead variant of the Lanczos recursion
• If matrix A is symmetric and the starting vectors v_1 and w_1 are identical, it is known as symmetric Lanczos method
• However, symmetric Lanczos method cannot match the maximal number of moments
 – Only half of the moments can be matched
Properties of Lanczos Vectors

- **Lanczos vectors:** \(\{v_n\}_{n=1}^{q+1} \) and \(\{w_n\}_{n=1}^{q+1} \)
- **Bi-orthogonality:**
 \[
 w_j^T v_k = v_j^T w_k = \begin{cases}
 \delta_j & \text{if } j = k \\
 0 & \text{if } j \neq k
 \end{cases} \quad j, k = 1, 2, \ldots, q + 1
 \]

Proof by induction:

\[
 v_{k+1} \rho_{k+1} = Av_k - v_k \alpha_k - v_{k-1} \beta_k
\]

\[
 \Rightarrow w_j^T v_{k+1} \rho_{k+1} = w_j^T Av_k - w_j^T v_k \alpha_k - w_j^T v_{k-1} \beta_k
\]

If \(j = k \):
\[
 w_k^T v_{k+1} \rho_{k+1} = w_k^T Av_k - w_k^T v_k \alpha_k - w_k^T v_{k-1} \beta_k = 0
\]

If \(j < k \):
\[
 w_{j+1} \eta_{j+1} = A^T w_j - w_j \alpha_j - w_{j-1} \gamma_j
\]

\[
 \Rightarrow w_j^T A = w_{j+1}^T \eta_{j+1} + w_j^T \alpha_j + w_{j-1}^T \gamma_j
\]

\[
 \Rightarrow w_j^T v_{k+1} \rho_{k+1} = w_{j+1}^T v_k \eta_{k+1} + w_j^T v_k \alpha_j + w_{j-1}^T v_k \gamma_j - w_j^T v_k \alpha_k - w_j^T v_{k-1} \beta_k = 0
\]
Properties of Lanczos Vectors (Cont’d)

• Let \(V_k = [v_1 \ v_2 \ \cdots \ v_k] \) \(k = 1, 2, \ldots, q \)
 \[W_k = [w_1 \ w_2 \ \cdots \ w_k] \]

Then \(D_k = W_k^T V_k = \text{diag} (\delta_1, \delta_2, \ldots, \delta_k) \)

• Bases of Krylov subspaces:
 \[\{v_n\}_{n=1}^k \text{ span } K_k (v_1, A) \]
 \[\{w_n\}_{n=1}^k \text{ span } K_k (w_1, A^T) \]
Properties of Lanczos Matrices

- Lanczos matrices: for \(k = 1, 2, \ldots, q \)

\[
T_k = \begin{bmatrix}
\alpha_1 & \beta_2 & 0 & \cdots & 0 \\
\rho_2 & \alpha_2 & \beta_3 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \rho_3 & \cdots & \cdots & \beta_k \\
0 & \cdots & \cdots & \cdots & \beta_k \\
0 & \cdots & 0 & \rho_k & \alpha_k
\end{bmatrix}
\]

and

\[
\tilde{T}_k = \begin{bmatrix}
\alpha_1 & \gamma_2 & 0 & \cdots & 0 \\
\eta_2 & \alpha_2 & \gamma_3 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \eta_3 & \cdots & \cdots & \gamma_k \\
0 & \cdots & \cdots & \cdots & \gamma_k \\
0 & \cdots & 0 & \eta_k & \alpha_k
\end{bmatrix}
\]

- Relation between Lanczos matrices:

\[
\tilde{T}_k^T = D_k T_k D_k^{-1}
\]

- Relation to matrix \(A \):

\[
A V_k = V_k T_k + \rho_{k+1} v_{k+1} e_k^T \\
A^T W_k = W_k \tilde{T}_k + \eta_{k+1} w_{k+1} e_k^T
\]

\(e_k^T \) is the coordinate vector whose \(j \)-th component = 1 and whose other components are 0.
Connection of Lanczos to Pade

- T_q is the matrix representation of bi-orthogonal of A onto $T_q(v_1, A)$ and $T_q(w_1, A^T)$

- It is the best approximation to A in the sense of matching the maximal number of moments
 - Recall that $m_k = l^T A^k r = (l^T A^{k'}) (A^{k''} r)$ where $k = k' + k''$
 - From relations of Lanczos matrices and A

$$
(l^T A^j)^T = \eta_1 (A^T)^j w_1
= \eta_1 (A^T)^j W_q e_1

= \eta_1 W_q \tilde{T}_q^j e_1

\Rightarrow l^T A^j = \eta_1 e_1^T (\tilde{T}_q^T)^j W_q^T

A^j r = \rho_1 A^j v_1
= \rho_1 V_q T_q^j e_1
\begin{cases}
 m_k = (\eta_1 e_1^T (\tilde{T}_q^T)^k W_q^T) (\rho_1 V_q T_q^{k''} e_1) \\
 = (\eta_1 \delta_1 e_1^T T_q^k D_q^{-1} W_q^T) (\rho_1 V_q T_q^{k''} e_1) \\
 = \eta_1 \rho_1 \delta_1 e_1^T T_q^k e_1 \\
 = (l^T r) (e_1^T T_q^k e_1) \quad \forall k = 0, \cdots, 2q - 1
\end{cases}
$$
Connection of Lanczos to Pade (Cont’d)

• q-th order Pade approximation

\[m_k = (l^T r)(e_1^T T_q^k e_1) \quad \forall k = 0, \cdots, 2q - 1 \]

\[
(l^T r) \cdot e_1^T (I - \sigma T_q)^{-1} e_1 = (l^T r) \cdot \sum_{k=0}^{\infty} e_1^T T_q^k e_1 \sigma^k
\]

\[= \sum_{k=0}^{2q-1} m_k \sigma^k + O(\sigma^{2q}) \]

\[\therefore H_q (s_0 + \sigma) = (l^T r) \cdot e_1^T (I - \sigma T_q)^{-1} e_1 \]
Eigendecomposition of T_q

$$T_q = S_q \Lambda_q S_q^{-1} \quad \Lambda_q = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_q)$$

$$H(s_0 + \sigma) = l^T r \cdot e_1^T S_q (I - \sigma \Lambda_q)^{-1} S_q^{-1} e_1$$

$$= \mu^T \quad = \nu$$

$$\therefore H(s_0 + \sigma) = \sum_{j=1}^{q} \frac{l^T r \cdot \mu_j \nu_j}{1 - \sigma \lambda_j} \quad \lambda_j: \text{reciprocal of pole}$$

$$H(s_0 + \sigma) = k_\infty + \sum_{\lambda_j \neq 0} \frac{-l^T r \cdot \mu_j \nu_j / \lambda_j}{\sigma - 1 / \lambda_j}$$

$$k_\infty = \sum_{\lambda_j = 0}^{q} l^T r \cdot \mu_j \nu_j \text{ may result if one of the eigenvalues is zero}$$
PVL Algorithm

Step 1: Run q steps of the Lanczos process to obtain the tridiagonal matrix T_q

Step 2: Compute an eigendecomposition

$$T_q = S_q \Lambda_q S_q^{-1} \quad \Lambda_q = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_q)$$

Set $\mu = S_q^T e_1$ and $\nu = S_q^{-1} e_1$

Step 3: Compute the poles and residues of H_q

Set $p_j = 1/\lambda_j$ and $k_j = \frac{1^T r \cdot \mu_j \nu_j}{\lambda_j}$

for all $j = 1, 2, \ldots, q$ with $\lambda_j \neq 0$

$$\kappa_\infty = \sum_{j=1}^{q} \frac{1^T r \cdot \mu_j \nu_j}{\lambda_j} \quad \text{if there is at least one } \lambda_j = 0$$
Remarks on PVL Algorithm

- Require roughly the same amount of computational work as AWE
 - Dominating cost is the LU factorization of \((G+s_0C)\) which needs to be computed only once
 - Needs total of \(2q\) computations of \(A v_n\) and \(A^T w_n\), same amount computation as AWE

- Numerically more robust than AWE

- PVL algorithm can be used to obtain bounds for the pole-approximation error

- Expansion point \(s_0\) is chosen such that \(s_0 = 2\pi f_{max}\) where the frequency range of interest is in \([0, f_{max}]\)
 - PVL is fairly insensitive to the choice of \(s_0\)
Arnoldi Algorithm for Krylov Subspace

[Silveira et al., ICCAD’96]

• Considers only the (right) Krylov subspace:

\[K_q(v_1, A) = \text{span}\{v_1, Av_1, \ldots, A^{q-1}v_1\} \]

• Apply the Arnoldi process (applied to \(A \) and \(r \)) to produce for \(j = 2 \ldots q \):
 – One sequence of \(j \) orthonormal Arnoldi vectors that span the Krylov subspace \(K_j(v_1,A) \)
 – A sequence of \(j \)-by-\(j \) upper Hessenberg (tridiagonal + upper triangular) matrices \(T_j^{(A)} \) which are matrix representations of orthogonal projections of \(A \) onto the Krylov subspaces

• Arnoldi process achieves orthonormality by using recurrences that involve all previous vectors
 – numerically optimal but time consuming

• The approximate transfer function matches only \(q \) moments
Arnoldi Process

Step 0: Set $\hat{v}_1 = r$

For $n = 1, 2, \ldots, q$ do:

Step 1: Compute $t_{n,n-1} = \|\hat{v}_n\|_2$

If $t_{n,n-1} = 0$, then stop

(Krylov subspace $K_n(A, r)$ is exhausted)

Step 2: Set $v_n = \frac{\hat{v}_n}{t_{n,n-1}}$

Step 3: Set $\hat{v}_{n+1} = Av_n$

Step 4: For $i = 1, 2, \ldots, n$ do:

Set $t_{i,n} = v_i^H \hat{v}_{n+1}$ and $\hat{v}_{n+1} = \hat{v}_{n+1} - v_i t_{i,n}$
Hessenberg Matrix

- **Upper Hessenberg Matrix**

\[
T^{(A)}_n = \begin{bmatrix}
t_{11} & t_{12} & \cdots & \cdots & t_{1n} \\
t_{21} & t_{22} & t_{23} & \ddots & \vdots \\
0 & t_{32} & t_{33} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & t_{n-1,n} \\
0 & \cdots & 0 & t_{n,n-1} & t_{n,n}
\end{bmatrix}
\]

- **Relation to matrix \(A \):**

For \(k = 1, 2, \cdots, q \)

\[
V_k = \begin{bmatrix}v_1 & v_2 & \cdots & v_k\end{bmatrix}
\]

\[
AV_k = V_k T^{(A)}_k + t_{k+1,k} v_{k+1} e_k^T
\]
Arnoldi-Based Reduced-Order Modeling

• The Arnoldi approach matches only q moments

$$A^k r = \|r\|_2 A^k v_1$$

$$= \|r\|_2 A^k V_q e_1$$

$$= \|r\|_2 V_q (T_q^{(A)})^k e_1$$

$$m_k = l^T A^k r = \|r\|_2 \cdot l^T V_q (T_q^{(A)})^k e_1 \quad \text{for } k < q$$

$$\therefore H_q^{(A)}(s_0 + \sigma) = \|r\|_2 \cdot l^T V_q (I - \sigma T_q^{(A)})^{-1} e_1 = H(s_0 + \sigma) + O(\sigma^q)$$

• Arnoldi-based reduced-order modeling is not Padé-approximation, it is only a Padé-type approximation

• Possible to perform two-sided Arnoldi process to obtain Padé-approximation, but too expensive
Matrix-Pade via Lanczos (MPVL)
[Feldmann-Freund, DAC’95]

- Interface between nonlinear and linear subnetworks is more complicated than one-port
 - AWE, PVL, and Arnoldi-based approach assume scalar-valued transfer function $H(s)$ for a single port

- An m-input p-output linear network can be analyzed by a $p \times m$ matrix of Laplace-domain transfer functions
 - Interface can be modeled by obtaining a Pade approximation for each pair of inputs and outputs using AWE, PVL, or Arnoldi-based approach
 - Computational cost increases rapidly with the size of interface
 - Individual approximate transfer functions are computed separately without sharing information

- MPVL used a block Lanczos algorithm to compute a matrix Pade approximation to the entire matrix-valued transfer function simultaneously
Matrix Transfer Function

• Represent a m-input p-output lumped, linear, time-invariant circuit by a system of first-order differential equations:

$$C \dot{x} = -Gx + Bu$$

$$y = L^T x$$

where B is $N \times m$, L is $N \times p$, u is a vector of input functions, and y is the vector of unknown output functions

• Transfer function matrix:

$$H(s) = Y(s)(U(s))^{-1} = L^T (G + sC)^{-1} B$$

• Let $s = s_0 + \sigma$, where s_0 is an arbitrary, but fixed expansion point such that $G + s_0 C$ is non-singular

$$H(s_0 + \sigma) = L^T (I - \sigma A)^{-1} R$$

where $A = -(G + s_0 C)^{-1} C$, $r = (G + s_0 C)^{-1} B$
Matrix Pade Approximation

• Expansion of matrix transfer function $H(s_0 + \sigma)$:

$$H(s_0 + \sigma) = \sum_{i=0}^{\infty} M_i \cdot \sigma^i$$

where M_i is $p \times m$, and it is called the moments or Markov parameters of H

• q-th Pade approximation ($q << N$):

$$H_q(s_0 + \sigma) = H(s_0 + \sigma) + O(\sigma^{2q})$$

$$= \sum_{i=0}^{2q-1} M_i \sigma^i + O(\sigma^{2q})$$

• Need a block Lanczos method to implicitly compute

$$M_i = L^T A^i R$$
Block Krylov Subspace

- Consider not just a single starting vector but multiple starting vectors: right and left starting vectors in matrices \(R \) and \(L \)

- Definition of right and left block Krylov Matrices

\[
K(R, A) = [R \ A R \ A^2 R \ \cdots \ A^{N-1} R]
\]

\[
K(L, A^T) = [L \ A^T L \ (A^T)^2 L \ \cdots \ (A^T)^{N-1} L]
\]

- \(K_n(R, A) \) \((K_n(L, A^T))\): \(n \)-th dimensional right (left) block Krylov subspace is the subspace spanned by the first \(n \) linearly independent columns of the matrix \(K(R, A) \) \((K(L, A^T))\)

- Block Lanczos construct two sequences of \(j \) bi-orthogonal basis vectors \(V_j = \{v_1, v_2, \ldots, v_j\} \) and \(W_j = \{w_1, w_2, \ldots, w_j\} \) for left and right block Krylov subspaces \(K_j(R, A) \) and \(K_j(L, A^T) \)
Sketch of Block Lanczos Method

Step 0: \(R = [r_1 \ r_2 \ \cdots \ r_m] \) and \(L = [l_1 \ l_2 \ \cdots \ l_p] \)

Set auxiliary vectors \(\hat{v}_i = r_i \) for \(i = 1 \ldots m \)

\(\hat{w}_i = l_i \) for \(i = 1 \ldots p \)

For \(n = 1, 2, \ldots, q \) do:

Step 1: Compute \(v_n = \frac{\hat{v}_n}{\|\hat{v}_n\|_2} \) and \(w_n = \frac{\hat{w}_n}{\|\hat{w}_n\|_2} \)

Step 2: Compute auxiliary vectors \(\hat{v}_{n+m} = Av_n \)

\(\hat{w}_{n+p} = Aw_n \)

Step 3: Biorthogonalize

\(\hat{v}_{n+m} \) against previous \(p \) Lanczos vectors \(w_i \)

\(\hat{w}_{n+p} \) against previous \(m \) Lanczos vectors \(v_i \)

Step 4: Biorthogonalize

next \(m \) Lanczos vectors \(\hat{v}_{n+i} \) against \(w_n \)

next \(p \) Lanczos vectors \(\hat{w}_{n+i} \) against \(v_n \)
Lanczos Matrix and Reduced-Order Model

- Block Lanczos method also produces two $q \times q$ Lanczos matrices T_q and \tilde{T}_q
 - T_q and \tilde{T}_q are banded matrices, T_q has m sub-diagonals and p super-diagonals, \tilde{T}_q has p sub-diagonals and m super-diagonals
 - Almost identical relations with A and Lanczos vectors as in the case of single-vector Lanczos method

- T_q is used in a reduced-order model

 $$\begin{align*}
 C\dot{x} &= -Gx + Bu, \quad y = L^T x \\
 \Rightarrow \quad -A\dot{x} + (I + s_0A)x &= Ru, \quad y = L^T x
 \end{align*}$$

 Use a q-size vector d to approximate, i.e., restrict x in the right Krylov subspace V_q

 $$\begin{align*}
 x &= V_q d \Rightarrow -AV_q \dot{d} + (I + s_0A)V_q d = Ru, \quad y = L^T V_q d \\
 \Rightarrow \quad -T_q \dot{d} + (I + s_0T_q)d &= W^T Ru, \quad y = L^T V_q d
 \end{align*}$$

 - Approximate the original system with a smaller system, combined with the rest of the system for simulation
Stable and Passive Reduced-Order Models

- Stable and passive networks can never generate more energy than it absorbs.
- Desirable to have guaranteed stable reduced-order models for general RLC circuits to ensure success of simulation.
- Mathematically, a real symmetric matrix A is said to be (strictly) stable if all its eigenvalues have (negative) non-positive real parts.
- A real symmetric matrix A is said to be negative semi-definite (definite) if for any non-zero vector x
 \[x^T A x \leq 0 \]
- Can show that if the real symmetric matrix A is negative semi-definite, then A is stable.
 - Consider eigenvalue λ and corresponding eigenvector x
 \[x^T A x = x^T \lambda x = \lambda x^T x \leq 0 \implies \lambda \leq 0 \]
Stable and Passive Reduced-Order Models

- Reduced-order models based on Arnoldi and symmetric Lanczos methods are stable if the real matrix A is negative semi-definite

\[x^T T_q x = x^T V_q^T A V_q x \]

\[= (V_q x)^T A (V_q x) \leq 0 \]

- Matrix $A = - (G + s_0 C)^{-1} C$ is not always negative semi-definite even if G and C are in general positive semi-definite

- Reduced-order models based on non-symmetric Lanczos methods can still be unstable even if the Pade approximates are generated from stable circuits

Make use of congruence transformation on semi-definite matrices

\[B = Q^T A Q \]

B is a congruent to A
Coordinate-Transformed Arnoldi Method
[Silveira et al., ICCAD’96]

• Basic idea: if A is negative semi-definite, matrix B is symmetric, then BAB is negative semi-definite

\[x^T BABx = x^T B^T ABx \]

\[= (Bx)^T A(Bx) \leq 0 \]

• Matrix \(A = -(G + s_0 C)^{-1}C \) is not always negative semi-definite

• Consider a change of coordinates: \(\tilde{x} = C^{\frac{1}{2}} x \)

\[C\dot{x} = -Gx + Bu = -(G + s_0 C)x + s_0 Cx + Bu \]

\[\Rightarrow (G + s_0 C)^{-1} C\dot{x} = -Ix + s_0 (G + s_0 C)^{-1} Cx + (G + s_0 C)^{-1} Bu \]

\[\Rightarrow C^{\frac{1}{2}} (G + s_0 C)^{-1} C^{\frac{1}{2}} \tilde{x} = -I\tilde{x} + s_0 C^{\frac{1}{2}} (G + s_0 C)^{-1} C^{\frac{1}{2}} \tilde{x} + \]

\[C^{\frac{1}{2}} (G + s_0 C)^{-1} Bu \]

• Perform Arnoldi recursion based on transformed system matrix:

\[\tilde{A} = C^{\frac{1}{2}} (G + s_0 C)^{-1} C^{\frac{1}{2}} \]
Pole Analysis by Congruence Transformation (PACT) [Kerns-Yang, TCAD’97]

- Pade approximation assumes that matching lower-order moments will produce dominant poles
- Cannot guarantee the “right” spectrum of poles are approximated
- PACT makes use of the basic idea of congruence transformation of semi-definite matrices
 - Transformation based on Cholesky factorization
 - Transformation based on Eigendecomposition
- Direct pole analysis allows preservation of poles of the RC network between dc and a user-specified maximum frequency
- RC Network reduction is equivalent to dropping of high-frequency poles
- Size of reduced RC network depends only on the number of low-frequency poles found
Circuit Description

• Laplace transform of a lumped, linear, time-invariant circuit:

\[(G + sC)x = Bu = b\]

• Partition and order the entries of matrices such that

\[
\begin{pmatrix}
G_P & G_C^T \\
G_C & G_I
\end{pmatrix} + s
\begin{pmatrix}
C_P & C_C^T \\
C_C & C_I
\end{pmatrix}
\begin{bmatrix}
x_P \\
x_I
\end{bmatrix} =
\begin{bmatrix}
b_P \\
0
\end{bmatrix}
\]

\(G_P, C_P\) : Port matrices describe connection among ports

\(G_I, C_I\) : Internal matrices describe connection among internal nodes

\(G_C, C_C\) : Connection matrices describe branches between ports and internal nodes
Matrix Transfer Function

- Transfer functions at the port (driving point impedances + admittances):
 \[T(s)x_P = b_P \]
 \[T(s) = (G_P + sC_P) - (G_C + sC_C)^T (G_I + sC_I)^{-1} (G_C + sC_C) \]

- Properties of sub-matrices \(G_P, C_P, G_I, C_I \):
 - If the values of the resistors and capacitors are positive, then each diagonal entry of \(G \) and \(C \) is positive and greater than or equal to the sum of the absolute value of the off-diagonal elements in the corresponding row.
 - Conditions are sufficient, but not necessary, to ensure that the matrices are non-negative definite (positive semi-definite).
 - Cannot consider inductance since matrix \(C \) would not satisfy these condition (although \(C \) may still be non-negative definite, and the method can still be applied).
 - If each internal node has a dc path to a port node, \(G_I \) is positive definite.
Poles and Eigenvalues

- Poles of $\mathbf{T}(s)$ occur where $(\mathbf{G}_I + s\mathbf{C}_I)$ is singular
- Equal to $-\lambda^{-1}$ where λ is the solution to the generalized eigenvalue problem:
 \[|\mathbf{C}_I - \lambda \mathbf{G}_I| = 0 \]
- Since \mathbf{G}_I is symmetric positive definite, \mathbf{C}_I is symmetric positive semi-definite, the eigenvalues are real and positive
- Therefore, the poles are real and less than zero
- To eliminate high-frequency poles implies elimination of small eigenvalues
- Two transformations are introduced to isolate and eliminate unwanted poles to reduce the size of the network
Transformation by Cholesky Factorization

• Convert G_I into identity matrix by Cholesky factorization (which exists since G_I is positive definite)

$$LL^T = G_I$$

• Let

$$X = \begin{bmatrix} I & 0 \\ -G_I^{-1}G_C & (L^T)^{-1} \end{bmatrix}$$

$$G' = X^T GX = \begin{bmatrix} G'_P & 0 \\ 0 & I \end{bmatrix}$$

$$C' = X^T CX = \begin{bmatrix} C'_P & C''_C \\ C'_C & C'_I \end{bmatrix}$$

$$T(s) = G'_P + sC'_P - s^2C''_C (I + sC'_I)^{-1}C'_C$$

• Needs to perform eigenanalysis on internal capacitance matrix C'_I to drop unwanted poles

• Will not affect dc behavior since C'_I makes no contribution to the first two moments
Transformation by Eigendecomposition

\[C'_I = U \Lambda U^T \]

\(\Lambda \) : diagonal matrix of eigenvalues

\(U \) : orthogonal square matrix of eigenvectors

Let \(X = \begin{bmatrix} I & 0 \\ 0 & U \end{bmatrix} \), \(G'' = X^T G' X = \begin{bmatrix} G'_P & 0 \\ 0 & I \end{bmatrix} \)

\(C'' = X^T C' X = \begin{bmatrix} C'_P & C''_T \\ C''_C & C''_I = \Lambda \end{bmatrix} \)

\[T(s) = G'_P + sC'_P - \frac{s^2 r_1^T r_1}{1 + s \lambda_1} - \ldots - \frac{s^2 r_N^T r_N}{1 + s \lambda_N} \]

where \(r_i \) is the \(i \)-th row of \(C''_C \) and

\(\lambda_i \) is the \(i \)-th diagonal of \(C''_I \)
Elimination of Unwanted Poles

\[G'' = \begin{bmatrix} G'_P & 0 \\ 0 & I \end{bmatrix} \quad C'' = \begin{bmatrix} C'_P & C''^T_C \\ C''_C & C''_I = \Lambda \end{bmatrix} \]

- Each pole is associated with a single internal node
- Unwanted poles are dropped by cutting the corresponding internal nodes
- Equivalent to removing the corresponding rows and columns in \(G'' \) and \(C'' \)
- Equivalent to removing the corresponding eigenvectors in \(U \) before the transformation is performed

- Which poles should we drop?
 - Given maximum frequency \(\omega_c \) and maximum error \(\varepsilon_c \)
 - If cut-off eigenvalue \(\lambda_c \) is defined by \(\varepsilon_c = \omega_c \lambda_c + \omega_c^3 \lambda_c^3 \)
 - Then, the error \(\varepsilon \) of dropping \(\lambda_i < \lambda_c \) is bounded by \(\varepsilon_c \)

\[
\varepsilon = \max_{k,l=[1\ldots m], \omega=[-\omega_c \ldots \omega_c]} \left[\frac{1}{2} \left| T_{kk}(j\omega) + T_{ll}(j\omega) \right| \right]
\]
Computation of Poles

• Use symmetric Lanczos method to compute a sequence of Lanczos vectors V_k and Lanczos matrix T_k

• Eigenvalues of T_k, known as Ritz values, approximates eigenvalues of C'_I

• Columns of U, known as Ritz vectors, are obtained by $V_k Z_k$ where Z_k is the eigenvectors of T_k

• Use the Lanczos with selective orthogonalization
 – Ritz values usually converged first to extreme eigenvalues of C'_I
 – Additional vectors are calculated until those (large) Ritz values within a specified range have converged
 – Avoids loss of orthogonality which slows convergence of the less dominant eigenvalues and creates “ghosts” of dominant eigenvalues
 – Allows closely spaced or multiple occurrences of eigenvalues to be found