Ch. 1 - Viscosity & the Mechanics of Momentum Transport

- **Hookean Momentum Transport**
 - Newton's Law of Viscosity: \[
 \tau_x = -\mu \frac{dy}{dz}
 \]
 - Shear stress is a force/unit area.
 - but, fluid flowing in the x-direction is acting on a surface w/ a y = const. face.
 - force is exerted by fluid of lesser y on fluid of greater y.

- There are 2 molecular stresses: 1 is from pressure, the other is from viscous stress.
 \[
 \tau_{ij} = \rho \delta_{ij} + T_{ij}
 \]
 \(\delta_{ij} = 1 \) if \(i = j \) but \(\delta_{ij} = 0 \) if \(i \neq j \).
 - \(\rho \delta_{ij} \) is the sum of the molecular stresses bearings the stress from pressure.
 - \(T_{ij} \) is the sum of the molecular stresses bearing the stress from viscous stresses.

- **Convective Momentum Transport**
 - Momentum is transported by the bulk motion of the fluid.
 - Convective momentum transport = \(\frac{\partial u}{\partial x} \) (momentum carried in x-direction).

- **Combined Momentum Flux**
 - Sum of the molecular + convective terms.
 \[
 \dot{\rho} = \nabla \cdot \mathbf{T} \]
 - So, \(\dot{x} = \rho \frac{\partial u}{\partial x} + \nabla \cdot \mathbf{T} \)
 - \(\dot{y} = \frac{\partial u}{\partial y} + \nabla \cdot \mathbf{T} \)

- **Momentum equation**, meaning it's divided by area (area which is why it all balances it's multiplied by an area term).

Ch. 2 - Shell Momentum Balance:

\[
\Phi_i \cdot \text{Area} = \Phi_{\text{ext}} \cdot \text{Area} + \text{Force of gravity} = 0
\]

\((5g \text{ W}) \)
Choosing Shell:
In all the momentum X-for problems done in this class, vel. is assumed to depend on only 1 coordinate. So, if velocity is a \(f(x) \) \(x \) (4-not y or z), then the shell has taken on so that it has a thickness of \(dx \). It's dimension in the y or z direction or finite (not zero).

Ex: Falling Film Problem (p. 42).

![Diagram showing a falling film with labels for momentum and velocity.]

\[\phi_{in}\cdot Wx \bigg|_{x=0} - \phi_{ex}\cdot Wx \bigg|_{x=L} + \phi_{ex}\cdot LW \bigg|_{x=L} - \phi_{in}\cdot LW \bigg|_{x=0} + \rho gLWdx = 0 \]

\[\frac{\phi_{in} - \phi_{ex}}{L} = \frac{d\phi_{in}}{dx} + \rho g = 0 \]

(Don't forget the negative sign)

- Component of \(y \)-direction:
 \[q_y = g \cos \theta \]

- Component of \(z \)-direction:
 \[q_z = g \sin \theta \]

- \(\phi_{in} \), \(\phi_{ex} \) \(x \) = 0, \(x \) = \(L \), \(g \) = \(g \cos \theta \)

\[\frac{d^2 u}{dx^2} = - g \cos \theta \]

\[\frac{d^2 v}{dx^2} = - g \sin \theta \cdot x + c \]

\[v(0) = g \cos \theta \cdot \frac{1}{2} x+c+\text{c_1} \]

BC: \(\text{At} x=0, v=x=0 \)

- \(\psi(x) = g \cos \theta \cdot \frac{1}{2} x+c_1 \) (since \(\psi \) is constant, shear stress is zero).
From BC1: \(\gamma_1 = 0 \), so \(\frac{d\gamma}{dx} = 0 \)

\[
\frac{d\gamma}{dx} = -\frac{\delta g \cos \theta}{M} \cdot 0 + C_1 \implies C_1 = 0
\]

From BC1:

\[
\gamma_2 = 0 = -\frac{\delta g \cos \theta}{M} \cdot \frac{x^2}{2} + C_2 \implies C_2 = \frac{\delta g \cos \theta}{M} \cdot \frac{\delta^2}{2}
\]

\[
\gamma_3 = \frac{\delta g \cos \theta - \delta^2}{2M} \left[1 - \left(\frac{x}{\delta} \right)^2 \right]
\]

- To calculate \(\text{vol} <V_3> \), integrate \(\gamma_3 \) over the cross-sectional area, then divide by the area:

\[
<V_3> = \frac{\int_{0}^{\delta} \gamma_3 \, dx \, dy}{\text{area}}
\]

- Force exerted by fluid on the solid surface:

\(\text{integrate} \gamma_3 \) over the surface area.

However, since the fluid (regarded as incompressible) is exerting a force on the solid (regarded as rigid), the sign should be positive.

\[
F_y = \int_{x=\delta}^{\infty} \left[\gamma_3 \right] \, dy \, dx
\]

- \(\text{Ex: Flow through circular tube & Anulus:} \)

- See Section 2.3 & 2.4

- Note: for a vertical tube, flow is due to a combination of pressure drop and gravity, which is why the \(\delta \) term is used.

Flow has to go in the direction to high \(P \) to low \(P \), which is why in this system:

\[
P = \rho \cdot g \cdot z
\]

\(\text{We need } P_g \text{ to be } > P_o \text{ for flow to go downward.} \)
In the system: $P = p + \frac{g}{\rho}$ so that $\rho \leq \rho^*$.

Note: a common mistake is to write the shell balance for circular tube "virtual problem"

\[\phi \left[2\pi rL - \phi \right] - \phi \left[2\pi rL + \ldots \right] = 0 \]

This is wrong. We think should really be $= \text{r}_r + \ldots$

\[\phi \left[2\pi rL \right]_{r} - \phi \left[2\pi rL \right]_{\text{r}_r + \ldots} = 0 \]

Ch3 Eqs of change for Isoth. Systems:

- Continuity equation derives from a mass balance:
 \[\frac{\partial \rho}{\partial t} = -(\rho \cdot \nabla) \rightarrow \text{flux} \]
 \[\rho = \text{const.} \]
 \[0 = \nabla \cdot \rho \cdot \nabla \]

- Eqn of motion derives from a momentum balance:
 \[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \cdot \mathbf{v}) = [\nabla \cdot (\rho \cdot \mathbf{v})] - \rho \cdot \{ \nabla \cdot \mathbf{v} \} + \frac{g}{\rho} \]

- Simplification to EOM:
 - $g \cdot \rho \cdot \text{are const.}$
 \[\frac{\partial \rho}{\partial t} \mathbf{v} = -\nabla \cdot (\rho \cdot \nabla \mathbf{v}) + g \mathbf{v} \]

 Navier–Stokes Eqn
 (see $$\frac{\partial \rho}{\partial t}$$ left)

 - Substantial time derivative:
 \[\frac{\partial \mathbf{v}}{\partial t} = \frac{\partial \mathbf{v}}{\partial t} + \nabla \cdot \mathbf{v} \]

 - Vel is v, small \rightarrow can neglect LHS
 \[0 = -\nabla \cdot (\rho \cdot \nabla \mathbf{v}) + g \mathbf{v} \]

 Stokes flow eqn.
- Ch 6 - Interphase Transport in Soil Systems

Def of Friction Factor:

\[F = A K f \]

- Flow in a conduit:

\[A = \text{wetted surface}, \ \text{For circular pipe, } A = \pi R L \]
\[K = \frac{1}{2} \rho V^2 \]
\[\therefore \ F_e = (2\pi RL) \left(\frac{1}{2} \rho V^2 \right) f \]
\[\therefore F_e = (A - 2R) \cdot \pi R^2 \]

\[\text{set } F_e = \text{to each other } \Rightarrow f = \frac{1}{4} \left(\frac{1}{2} \left(\frac{2R - 2R}{2\pi RL} \right) \right) \]

- Flow around a submerged object:

\[A = \text{X-sectional area}, \ \text{For sphere, } A = \pi R^2 \]
\[K = \frac{1}{2} \rho V^2 \quad \text{[approach]} \]
\[\therefore \ F_e = (\pi R^2) (\frac{1}{2} \rho V^2) f \]
\[\therefore F_e = \text{force of gravity on sphere - buoyant force on sphere} \]
\[F_e = \frac{4}{3} \pi R^3 \text{ \text{g m} \cdot \text{g} - \frac{1}{6} \pi R^2 \text{ \text{g m} \cdot \text{g}}} \]

\[\text{set } F_e = \text{to each other } \Rightarrow \]
\[f = \frac{4}{3} \frac{g D}{V^2} \left(\frac{\text{Sphr} - \text{Fluid}}{\text{Fluid}} \right) \]
- Find value of friction factor for a given of Re → find value of Re to know whether flow is laminar or turbulent.
- Use eqns & figures in section 6.2 to get value of f.
- Mean hydraulic radius R_h → usually used for turbulent flow in pipes rather than laminar flow.

$$R_h = \frac{\frac{A}{2}}{2 \pi r}$$

For ex: for a circular tube:

$$R_h = \frac{\pi D^2}{4 \pi} = \frac{D}{2}$$

Ch.7 - Macroscopic Balances for Isothermal Flow:

- The most frequently used eqn in Ch.7 is probably 7.5-10

$$\sum \left(\frac{1}{2} \left(v_x + v_y \right) \right)^2 + \sum g(z_s - z_x) = \int_{v_1}^{v_2} \frac{1}{2} dp = \Delta \rho = \sum \left(\frac{1}{2} v^2 \right) R_h + f \left(\frac{1}{2} v^2 \right)$$

(evaluated at plane 1)
(evaluated at plane 2)

→ choose plane 1→2 to make the problem as easy as possible.

Energy Transfer

Chs. 9, 10, 11, 14, 15, 16
Mass Transfer

Ch. 11 - Diffusion & Henry's Law of Mass Transfer:

- Molecular Mass Transfer:
 \[\dot{m}_i = S_i (Y_A - Y_i) = -S_i \frac{\partial \rho}{\partial \rho} \frac{\partial \rho}{\partial x_i} \rightarrow (\dot{m}_g = -S_g \frac{\partial \rho}{\partial \rho} \frac{\partial \rho}{\partial y_g}) \]
 \[J_A = C_A (Y_A - Y_i) = -C_A \frac{\partial \rho}{\partial \rho} \frac{\partial \rho}{\partial x_A} \rightarrow (\dot{J}_g = -C_g \frac{\partial \rho}{\partial \rho} \frac{\partial \rho}{\partial y_g}) \]

- Molar Mass:
 \[\gamma = \frac{\sum n_i \omega_i Y_i}{\sum n_i \omega_i} \rightarrow \text{for binary system: } \gamma = \omega_A Y_A + \omega_B Y_B \]
 \[\gamma = \sum n_i \omega_i x_i \rightarrow \gamma = x_A Y_A + x_B Y_B \]

- Mole Fraction:
 \[n_A = \frac{\dot{m}_A}{\gamma} \]
 \[x_A = \frac{n_A}{\dot{m}} \]

\[\text{total mols + molar fractions must sum to 1, so for a binary system:} \]
\[\text{so mass fraction of } \frac{\text{A}}{\text{B}} \rightarrow \text{mass fraction of } \frac{\text{A}}{\text{B}} \]
\[x_A + x_B = 1 \]

- Convective Transfer:
 mass is transferred by bulk motion of fluid:
 \[\text{convective mass flux rate} = f \dot{m}_B \]
 \[\text{mole flux} = C_B \dot{m}_B \]

- Combined Mass Transfer:
 \[\text{Sum of molecular + convective terms} \]
 \[\dot{m} = \dot{m}_A + \dot{m}_B \]
 \[N_{AB} = \dot{m}_A + C_B \dot{m}_B \]

- Ch. 12 - Concentration:
 \[N_{AB} = -C_A B \frac{\partial \rho}{\partial y_A} + \gamma (N_{AB} + N_{BA}) \text{ for Binary System} \]
 \[\text{(molecular molar flux + convective molar flux)} \]
In many problems, A is diffusing in B, which is stagnant, so:

\[N_A = -\frac{C_A^0}{A} \frac{dX_A}{dt} \]

- **Shell balance:**

\[
\text{rate in} \quad A \text{ in} \quad \text{rate out} \quad \text{rate gained} = \frac{d}{dt} (\text{mass A})
\]

(some eqn can be written for A)

- **Chemical rxn's:**

 - **Homogeneous rxn occurs throughout a vol**

 \[k_A = k_{\text{vol}} \frac{[A]^{[0]}}{[A]^n} \]

 rate occurring throughout a vol

 - **1st ord rxn: \(k \left[\frac{mol}{L \cdot s} \right] \)**

 - **Heterogeneous rxn's occurring on surface of a catalyst**

 \[N_A = k_{\text{area}} \frac{[A]^{[0]}}{[A]^n} \]

 rate occurring on a surface

 \[1^\text{st ord} \text{ rxn: } k \left[\frac{mol}{cm \cdot s} \right] \]

- **Ch. 19 - Eqn's of Change:**

 - See Section 19.1 for eqns.