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We present a calculation of the thermal conductivity of graphene nanoribbons �GNRs�, based on
solving the Boltzmann transport equation with the full phonon dispersions, a momentum-dependent
model for edge roughness scattering, as well as three-phonon and isotope scattering. The interplay
between edge roughness scattering and the anisotropy of the phonon dispersions results in thermal
conduction that depends on the chiral angle of the nanoribbon. Lowest thermal conductivity occurs
in the armchair direction and highest in zig-zag nanoribbons. Both the thermal conductivity and the
degree of armchair/zig-zag anisotropy depend strongly on the width of the nanoribbon and the rms
height of the edge roughness, with the smallest and most anisotropic thermal conductivities
occurring in narrow GNRs with rough edges. © 2011 American Institute of Physics.
�doi:10.1063/1.3569721�

Single-layer graphene is a unique material made up of a
monolayer of sp2-hybridized carbon atoms that is capable
of purely two-dimensional electrical1 and thermal transport.2

It can be fashioned into a broad range of shapes, from
millimeter-sized flakes down to very narrow nanoribbons.
Despite single-layer graphene possessing superior thermal
conductivity,3,4 graphene nanoribbons �GNRs� have been
shown to have the potential to be excellent thermoelectrics
with very high values of the thermoelectric figure-of-merit
ZT.5 The enhancement of ZT has been explained by the fact
that the presence of line edge roughness in narrow GNRs
affects thermal transport very strongly6 while leaving elec-
tronic transport relatively unchanged.5 Previous studies of
the effect of width, line edge roughness, and anisotropy on
thermal conductivity largely relied either on the ballistic
approximation7 or a simplified treatment of edge roughness
scattering.8 Studies based on molecular dynamics also dem-
onstrated the anisotropy of thermal conductivity and sensi-
tivity to width and edge roughness;9 however, such studies
were limited in the range of sizes that could be examined.

In this letter, we study the lattice thermal conductivity in
GNRs over a wide range of widths, edge roughness values,
and chiral angles. We calculate thermal conductivity by solv-
ing the phonon Boltzmann transport equation in the relax-
ation time approximation, and account for phonon-phonon,
phonon-isotope, and edge roughness scattering. We assume a
thermal gradient is applied along the nanoribbon and show
that thermal conductivity varies with the chiral angle of the
ribbon, with a minimum in armchair and a maximum in zig-
zag GNRs. The angular variation becomes stronger as the
width of the ribbon decreases because of the increased role
of phonon scattering with the rough edges of the narrow
nanoribbon. Edge roughness scattering also causes the over-
all value of the thermal conductivity to decrease with de-
creasing width.

In order to obtain accurate thermal conductivities in an
arbitrary transport direction, we employ the full phonon

dispersion, shown in Fig. 1. Phonon dispersion has been pre-
viously measured by Raman spectroscopy10 and x-ray
scattering11 and compared to calculations. Based on experi-
mental results, the empirical fourth-nearest-neighbor
�4NNR� model of Saito12 was reparametrized to include
new experimental findings10 and first-principles numerical
calculations,11 while also including off-diagonal terms of
the force constant matrices13 and rotational invariance
conditions.14 The reparametrized 4NNR model has been
shown to offer an excellent fit to both experiments and first-
principles calculations.13 We use the 4NNR model with pa-
rameters obtained by fitting first-principles results with a
small correction to the in- and out-of-plane tangential force
constants to satisfy the rotational invariance condition.14

Scattering from the rough edges of the nanoribbon is
partially diffuse and can be accurately described by a
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FIG. 1. �Color online� Phonon dispersion relationship of single-layer
graphene calculated using the 4NNR model, showing the TA, LA, ZA, and
ZO branches over the first Brillouin zone of graphene. The dispersions are
strongly anisotropic, causing phonon group velocities �given by the gradi-
ents of the radial frequency �� to be strongly dependent on the direction of
the phonon wave vector. The remaining two optical branches �TO and LO�
are not depicted due to their negligible contribution to thermal transport.
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momentum-dependent specularity parameter 0� p�q���1,
which represents the probability that a phonon mode q� will
be scattered from the rough edge.15 The lifetime of a phonon
with wave vector q� in branch � due to the interaction with
rough edges is then given by

��,E�q�� = �1 + p�q��
1 − p�q��� W

��,��q��
, �1�

where W is the width of the ribbon and ��,��q�� is the com-
ponent of the phonon velocity of mode q� in branch � per-
pendicular to the idealized smooth edge of the nanoribbon.
The specularity parameter is related to the rms height of edge
variations �, phonon momentum q� , and angle �E between the
phonon wave vector and the normal to the nanoribbon edge
through16 p�q��=exp�−4q2�2 cos2 �E�.

The resistive umklapp phonon-phonon scattering rate
can be calculated in the standard general approximation for
dielectric crystals17

��,U
−1 �q�� =

	
�
2

M̄���̄�
2
��

2�q��Te−��/3T, �2�

where the speed of sound �̄� of each branch � is determined
from the average slope of its dispersion curve near the �

point,18 and M̄ is the average atomic mass. The expression in
Eq. �2� has been used successfully for graphene,18 carbon
nanotubes,19 and GNRs;8 however, the exponential term
e−��/3T in the temperature dependence is often omitted. This
term controls the onset of resistive umklapp scattering for
each phonon branch through the branch-specific Debye tem-
peratures ��, which were obtained from20

��
2 =

5	2

3kB
2

��2g����d�

�g����d�
, �3�

where the vibrational density of states �vDOS� function
g����=	q���−���q��� was calculated for each phonon
branch � from the full dispersion. This way, the temperature
dependence of the contribution of each phonon branch to the
total thermal conductivity is correctly represented.

The strength of the phonon-phonon scattering process
for each branch is controlled by the Grüneissen constant 
�,
which is deduced from the logarithmic derivative of disper-
sion with respect to volume 
�=−�a /2���q����d���q�� /da�.
Based on first-principles calculations for graphene, it was
shown that 
TA,LA are nearly constant throughout the first
Brillouin zone and that the relationship 
LA /
TA
3 holds
for transverse acoustic �TA� and longitudinal acoustic �LA�
modes.18,21 The value of 
LA is generally taken to be 2,8,18

while the value for out-of-plane acoustic �ZA� and out-of-
plane optical �ZO� modes is negative, and can be approxi-
mated to be �1.5.18

Scattering from mass differences due to the presence of
naturally occurring isotopes can be represented by an energy-
dependent rate �I

−1���=��0 /12�2g���, with the total vDOS
function given by a sum over all branches g���=	�g����.
The mass-difference constant � is given by the sum over all
naturally occurring isotopes weighted by their mass Mi rela-

tive to the average mass M̄,22 �=	i f i�1−Mi /M̄�2=c�1
−c� / �12−c�2. Using natural abundances of 12C and 13C of
98.9% and 1.1%, respectively, we obtain c=0.011. Phonon
lifetimes due to roughness, phonon-phonon umklapp, and

isotope scattering are combined according to ��
−1�q��

=��,E
−1 �q��+��,U

−1 �q��+�I
−1����q��� and used to calculate the total

thermal conductivity tensor by summing over all the phonon
branches �=TA,LA,ZA,ZO that contribute significantly to
thermal transport

����T� =
1


	
�,q�

��
��q����

��q����
−1�q��	���q��

�N0�T�
�T

, �4�

with the thickness of the monolayer is assumed to be23 
=0.335 nm, and ��

�,��q�� is the components of the phonon
group velocity vector obtained from the full dispersion by
��

�,��q��=����q�� /�� ,�.
Figure 2 shows a comparison of the calculated thermal

conductivity in a 5 �m wide ribbon with rms edge rough-
ness �=1 nm, indicating excellent agreement with recent
measurements on suspended ribbons of that same width.3,4 In
these wide ribbons �W=5 �m�, phonon-phonon umklapp
scattering dominates at room temperature, as can be seen
from the roughly ��1 /T behavior in Fig. 2. Since the Grü-
neissen parameter 
 follows 
LA /
TA
3, the TA mode has
the largest contribution to the thermal conductivity at room
temperature, while the ZA mode is stronger at low tempera-
tures below the thermal conductivity peak, which occurs
around 130 K in the 5 �m wide ribbon.

Angular variation in the lattice thermal conductivity is
depicted in Fig. 3. Edge rms roughness � is assumed to be 1
nm in all cases.6 The angle �C is taken with respect to the
armchair edge of the nanoribbon, so that an angle of zero
degrees represents an armchair GNR, while an angle of 30
degrees represents a zig-zag ribbon, as shown in Fig. 3�a�.
Thermal conductivity of wide �W=1 �m� GNRs �Fig. 3�b��
shows a well defined minimum at �C=0° �armchair direc-
tion� and a maximum occurring at �C=30° �zig-zag direc-
tion�. This can be attributed to the TA mode having the stron-
gest contribution in wider ribbons, which leads to a simple,
smooth variation in � with the chiral angle. In addition, in
wider ribbons with W��, where � is the phonon mean-free-
path due to phonon-phonon scattering �we obtain �

677 nm at room temperature, in agreement with earlier
calculations6�, phonon-phonon umklapp scattering dominates
over partially diffuse boundary scattering from the rough
edges, and therefore limits the angular variation in the ther-
mal conductivity.
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FIG. 2. �Color online� Thermal conductivity results for GNRs of width
W=5 �m and rms edge roughness �=1 nm, showing contributions from
individual phonon branches �TA, LA, ZA, and ZO� and total. Symbols and
error bars are the experimental results for the total thermal conductivity of
several suspended nanoribbons, approximately 5 �m wide, taken from Ref.
3 �� and �� and Ref. 4 ���, shown here for comparison.
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However, in narrow ribbons with W�� �Figs. 3�c� and
3�d��, boundary scattering takes over even at room tempera-
ture �as evidenced by the strong dependence of thermal con-
ductivity on width and edge roughness in Fig. 4�a�. The con-
tributions from LA and TA modes become roughly equal,
leading to a more complex angular behavior with multiple
local maxima and minima �Figs. 3�c� and 3�d��. Nonetheless,
the minimum still occurs near the armchair and the maxi-
mum near the zig-zag direction. The amount of anisotropy,
given by the ratio of the thermal conductivity in the zig-zag
and the armchair directions �= ��zigzag /�armchair−1�, in-

creases with decreasing ribbon width W and increasing
roughness �, as shown in Fig. 4�b�, because of the increased
influence of diffuse scattering from the rough edges.

In conclusion, we demonstrated that the physical width
of the nanoribbon and the rms roughness of its line edges can
be used along with angular direction as parameters to tailor
the value of the thermal conductivity. Future measurements
of thermal conductivity in GNRs along different chiral
angles would shed more light on the thermal transport prop-
erties of GNRs and provide critical information on the rela-
tive contributions of the phonon branches to the total thermal
conductivity.
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FIG. 3. �Color online� Definition of angle �C �a�, thermal conductivity of
GNRs of width 1 �m �b�, 100 nm �c�, and 20 nm �d� at temperatures of 100
K �blue dash-dotted curves�, 200 K �black dashed curves�, and 300 K �red
solid curves�, showing strong dependence of the thermal conductivity on the
angle along which the ribbon is cut, with a minimum occurring in armchair
��C=0°� nanoribbons, and a maximum occurring in zig-zag ��C=30°� nan-
oribbons. The rms roughness of the ribbon edges was assumed to be 1 nm in
all cases.
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FIG. 4. �Color online� Dependence of the room temperature thermal
conductivity of armchair GNRs �a� and anisotropy �defined as �
= ��zigzag /�armchair−1�� �b� on the GNR width. In both panels, the rms rough-
ness � of the nanoribbon edges was varied from 0.1 to 1 nm in 0.1 nm steps;
the direction of increasing � is indicated by the arrows. Thermal conductiv-
ity decreases with decreasing width W and increasing roughness � due to
the stronger diffuse scattering with the rough edges. Anisotropy � is also
larger in narrower ribbons with rougher edges due to the increasing influ-
ence of edge scattering.
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