
PHYSICAL REVIEW B 86, 165426 (2012)

Thermal transport in graphene nanoribbons supported on SiO2
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We present a theoretical model for thermal transport in graphene nanoribbons (GNRs) on SiO2 based on solving
the phonon Boltzmann transport equation. Thermal transport in supported GNRs is characterized by a complex
interplay between line edge roughness (LER) and internal scattering, as captured through an effective LER
scattering rate that depends not only on the surface roughness features, but also on the strength of internal scattering
mechanisms (substrate, isotope, and umklapp phonon scattering). Substrate scattering is the dominant internal
mechanism, with a mean free path (mfp) of approximately 67 nm. In narrow supported GNRs (W < 130 nm, i.e.,
roughly twice the mfp due to substrate scattering), phonon transport is limited by LER and spatially anisotropic.
For intermediate widths (130 nm < W < 1 μm) a competition between LER and substrate scattering governs
transport, while thermal transport in wide GNRs (W > 1 μm) is dominated by substrate scattering and spatially
isotropic. Thermal transport in supported GNRs can be tailored by controlling the ribbon width and edge
roughness. We conclude that narrow ribbons act as longitudinal heat conduits while wide ribbons act as good
omnidirectional heat spreaders.
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I. INTRODUCTION

Graphene possesses superior thermal conductivity1,2 im-
portant for the potential applications of graphene-based
nanostructures as devices and heat spreaders in dense mi-
croelectronic circuits.2 Experimental work on the thermal
properties of graphene spurred a number of theoretical
studies.3 Calculations based on the relaxation-time approxi-
mation (RTA),4–6 tight-binding,7 molecular dynamics,8,9 and
the ballistic approximation10 confirmed graphene’s excellent
thermal properties. However, device applications of graphene
typically employ samples supported on SiO2,11 where the in-
teraction between graphene and the substrate surface variations
drastically reduce graphene’s thermal conductivity relative to
its suspended counterpart.12

Graphene nanoribbons (GNRs), narrow strips of graphene,
are important for a number of applications. Logic devices have
to be made from very narrow GNRs in order to lithographically
tune the band gap and achieve the required on-off ratios.13,14

In high-frequency applications, it was found that devices
based on wide GNRs benefit from lateral heat spreading and
dissipate efficiently into the substrate,11 while those made
from narrow ribbons mainly dissipate heat longitudinally,
into the metallic contacts.15 These experimental findings raise
questions about the parallel and cross-ribbon components of
the thermal conductivity tensor in supported GNR devices.

In narrow GNRs, line edge roughness (LER) has been
shown to reduce the lattice thermal conductivity relative to its
value in large flakes.7–9,16 Moreover, when graphene is cut into
nanoribbons, directional anisotropy of thermal conductivity
appears,16–18 in contrast to the isotropic ballistic thermal
conductivity of graphene.19 Despite tremendous experimental
and theoretical progress, a study treating both substrate and
line edge roughness effects on thermal transport, as well as
their mutual interplay and the resulting directional anisotropy
of the lattice thermal conductivity tensor, is lacking.

In this paper, we explore lattice thermal transport in GNRs
supported on a SiO2 substrate. We demonstrate the sensitivity

of the lattice thermal conductivity in GNRs to the edge
properties, based on solving the phonon Boltzmann transport
equation (pBTE) under the relaxation time approximation. We
derive a solution to the pBTE in the cross-ribbon direction
with partially diffuse edges in the presence of competing
substrate roughness, umklapp phonon, and isotope scattering
processes. Based on this solution, we compute the lattice
thermal conductivity tensor and show that it has distinct com-
ponents along and across the ribbon. The parallel/cross-ribbon
anisotropy increases with decreasing width and increasing
line edge roughness, and with decreasing temperature. In
supported nanoribbons, we identify three ranges of the GNR
width W based of the competition between edge roughness
and substrate scattering: (1) narrow ribbons (W < 130 nm,
130 nm roughly being twice the length of the substrate-limited
mean free path), where line-edge roughness dominates and
directional anisotropy in phonon transport is pronounced,
(2) medium-width ribbons (130 nm < W < 1 μm), where
substrate and roughness scattering compete and the two edges
are effectively decoupled, and (3) wide ribbons (W > 1 μm),
where substrate scattering dominates and thermal transport is
isotropic. We conclude that thermal conductivity of narrow
GNRs can be tailored by controlling their width and edge
properties. Coupled with good electronic transport properties,
this opens up the possibility of using GNRs for high-efficiency
thermoelectric conversion.

The paper is organized as follows: In Sec. II, we present
the phonon transport model and derive the solution of the
steady-state phonon Boltzmann transport equation in the
presence of competing effects of roughness scattering at
the edges of the ribbon and other scattering mechanisms,
including substrate, isotope, and umklapp phonon, within the
ribbon. In Sec. III, we present the parallel (along the ribbon)
and perpendicular (laterally across the ribbon) components of
the thermal conductivity tensor in narrow graphene nanorib-
bons. We compare our results to available experimental data
and discuss the interplay between the line edge roughness and
substrate scattering, as well as their combined effect on thermal
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conductivity. We conclude in Sec. IV, with a brief summary
and a few final remarks.

II. PHONON TRANSPORT MODEL

Phonons are the dominant carriers of heat in graphene.12 We
model lattice thermal transport in GNRs by solving pBTE. Due
to the absence of the Casimir limit in GNRs,20 we cannot treat
edge roughness scattering separately from the other scattering
mechanisms; instead, the complete pBTE must be solved,
taking into account all the scattering mechanisms occurring
within the ribbon, in addition to the diffusive interactions of
phonons with the rough edges. We are interested in the linear
response of the phonon population to small perturbations, such
as the application of a small uniform temperature gradient.
Since the dominant edge and substrate scattering processes are
both elastic, the single-mode relaxation time approximation
(RTA) form of the pBTE can be used, and the pBTE can be
written in the steady state as

�υ�q · ∇N�q(x,y) = −N�q(x,y) − N0
�q (T )

τint.(�q)
, (1)

where N0
�q (T ) is the equilibrium Bose-Einstein phonon distri-

bution, N�q(x,y) is the number of phonons with wave vector
�q at spatial position (x,y) in the ribbon (the branch phonon
index is omitted for brevity), and �υ�q is the mode velocity.

The total “internal” relaxation rate, τ−1
int. (�q), is a sum of the

scattering rates due to all the mechanisms that take place
within the ribbon except line edge roughness scattering, which
includes umklapp phonon-phonon, isotope, impurity, as well
as substrate interactions. The expressions for the umklapp
phonon-phonon and isotope scattering rates were taken from
Ref. 16. Substrate scattering is modeled as a point interaction
with small patches where the ribbon is in contact with the
substrate.12 This model leads to a phonon lifetime that is
proportional to the vibrational density of states (vDOS) ρ(ω)
and the form factor φ(�q) of the contact patches, assumed to be
circular in shape:

τ−1
sub.(�q) = π

2

Nscat.

Ncω2(�q)
φ(�q)

(
Kf

MC

)2

ρ(ω), (2)

where Nscat. is the density of scattering centers, Nc is the
number of contact atoms in the contact patch, MC is the mass
of a carbon atom, and Kf = 0.7 Nm−1 is the interaction force
between graphene and the substrate, following Seol et al.12 The
substrate scattering model assumes that the contact between
the graphene and the substrate is through circular patches of
a single effective, or average, size. This assumption limits the
model to substrates that have relatively uniform atomic-scale
surface roughness, such as SiO2 used in the present study.
Other substrates with larger surface variation could lead to
contact patches with more pronounced variations in size and
shape, which could be addressed in future work by using a
spatially varying substrate scattering rate to match the shapes
and positions of the interaction patches between the graphene
and the substrate.

We consider the response of the phonon population to
the application of a small uniform temperature gradient. The
solution to the pBTE in the absence of boundaries has the

κ⊥ κ||

nq̄(W)

n q(0)

nq(y)
W

x

y

Λ⊥
int.(q)E

FIG. 1. (Color online) Schematic representation of a graphene
nanoribbon, showing the ribbon width W , line edge rms roughness
�, and a phonon path through the ribbon with the pBTE solution
n�q (y) and boundary conditions nq̃ (W ) and n�q (0) marked along that
path. The phonon path inside the ribbon is interrupted by an internal
scattering event. Thermal conductivities in the parallel (κ||) and
perpendicular (κ⊥) directions are also depicted.

familiar homogeneous “bulk” RTA form where the response
is proportional to the perturbing temperature gradient

R�q = τint.(�q)�υ�q · ∇T
[
dN0

�q (T )/dT
]
. (3)

When boundaries are introduced, the solution becomes
position-dependent along the y direction, normal to the edges
of the ribbon. Therefore, we write the complete solution as
N�q(x,y) = N0

�q (T ) + n�q(y) and introduce it into the pBTE21

to obtain

�υ�q · ∇T
dN0

�q (T )

dT
+ υ⊥

�q
∂n�q(y)

∂y
= n�q(y)

τint.
. (4)

For a phonon wave that leaves the bottom edge (y = 0) with a
normal wave vector component along y (q⊥ > 0), the solution
starts from n�q(0) (the boundary value at y = 0) and approaches
the RTA value [Eq. (3)] away from the edge

n+
�q (y) = R�q − [R�q − n�q(0)] exp[−y/�⊥

int.(�q)]. (5)

Here, �int.(�q) = υ�qτint.(�q) is the mean free path (mfp) due to
internal scattering and �⊥

int.(�q) is its component corresponding
to motion across the ribbon, perpendicular to its edges. The
solution for a phonon leaving the opposite boundary at y =
W with a normal wave vector component in the negative y

direction (q⊥ < 0), as depicted in Fig. 1, is

n−
�q (y) = R�q − [R�q − n�q(W )] exp[−(W − y)/�⊥

int.(�q)].

At y = 0, the following boundary condition holds for
partially specular reflection of the phonon wave22,23

N�q(0) = p(�q)Nq̃(0) + [1 − p(�q)]N0
�q (T ), (6)

where q̃ is a specular reflection of �q from an edge (q̃y = −qy).
In this work, in order to accurately treat phonon scattering
from rough edges with a given rms roughness height (�),
we employ a momentum-dependent specularity parameter
p(�q) = exp(−4q2�2 sin2 �E)16,24 that represents the fraction
of specular reflections to the total number of reflections from
a rough boundary [0 � p(�q) � 1]. This expression allows us
to connect the specularity parameter p(�q) directly to the rms
magnitude of the surface roughness �, the phonon wave vector
�q, and the angle �E between the incident phonon wave vector
and the edge direction.

Substituting N�q(0) = N0
�q (T ) + n�q(0) into Eq. (6), we find

the boundary condition on the spatially varying part of the
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solution as n�q(0) = p(�q)nq̃(0) at the bottom (y = 0) edge.
An equivalent boundary condition is applied to the phonons
moving in the negative y direction (q⊥ < 0) at the y = W

boundary for the n−
�q (y) solution. As an ideally smooth ribbon

would be symmetric upon reflection from the y = W/2
plane, nq̃(0) = n�q(W ), so n�q(0) = p(�q)n�q(W ), which is then
introduced into Eq. (5) to solve for n�q . Finally,

n+
�q (y) = R�q

{
1 − [1 − p(�q)] exp[−y/�⊥

int.(�q)]

1 − p(�q) exp[−W/�⊥
int.(�q)]

}
. (7)

The solution n−
�q (y) for a phonon wave in the negative y

direction (q⊥ < 0) would be analogous, only with (W − y)
replacing y due to inversion symmetry of the system. We
note here that an identical solution is also obtained by tracing
the solution through an infinite series of partially specular
reflections and then summing the infinite series.25

The spatially resolved solution to the pBTE enables us to
take a close look at the role that edge scattering plays in phonon
transport. At any point across the ribbon, the heat flux carried
by the modes with q⊥ > 0 can then be given as a function of
position y as

�Q+(y) = h̄
∑
q⊥>0

ω(�q)�υ�qn
+
�q (y), (8)

and analogously for �Q−(y), which is given by a sum over
all phonon modes with q⊥ < 0 (of course, the sum also
subsumes the suppressed branch index). The heat flux vectors
are functions of position because of the effect of edges
captured by n

+/−
�q (y) [Eq. (7)]. If we apply a thermal gradient

in a certain direction, then the ratio of the heat flux in
the same direction to the magnitude of the gradient, |∇T |,
will yield the thermal conductivity in the direction of the
gradient. Consequently, κ+/−(y) = | �Q+/−(y)|/|∇T | are the
contributions to the spatially-resolved thermal conductivity
along the gradient that stem from the phonons moving in
the positive/negative y directions. These two contributions
allow us to observe the effect of edge roughness scattering
on the position-resolved heat flux across the ribbon. Figure 2
depicts the contributions to the spatially-resolved parallel
[Figs. 2(a) and 2(c)] and perpendicular [Figs. 2(b) and 2(d)]
thermal conductivity that come from the phonons with wave
vectors directed into the top edge (“ + ”, q⊥ > 0) and bottom
edge (‘‘−”, q⊥ < 0). In the top row [Figs. 2(a) and 2(b)],
we see the spatially resolved thermal conductivities of a thin
GNR (W = 15 nm), while in the bottom row [Figs. 2(c) and
2(d)] the GNR is wide (W = 1.5 μm). In general, the parallel
and perpendicular components of both κ+ and κ− are smallest
near the y = 0 and y = W edges. The perpendicular mfp �⊥

int.
is an effective width of the region near the edges in which
LER significantly affects thermal transport. In wide ribbons,
W � 2�⊥

int., κ+/− return to their bulk value away from the
edges, as shown in Figs. 2(c) and 2(d), so both the parallel and
perpendicular thermal conductivities will be close to the “bulk”
RTA value (3) throughout most of the GNR. In narrow GNRs
(W > 2�⊥

int.), the thermal conductivity is strongly affected by
edge scattering and remains well below the bulk RTA value
throughout the ribbon [Figs. 2(a) and 2(b)].

However, experiments typically record a spatially averaged
thermal conductivity. An effective way to capture the influence
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FIG. 2. (Color online) Position dependence of the room-
temperature lattice thermal conductivity of graphene nanoribbons
in narrow [W = 15 nm in (a) and (b)] and wide [W = 1.5 μm in
(c) and (d)]. Line edge roughness was set to � = 1 nm in all cases.
The κ+/− components, as well as the total thermal conductivities, are
plotted in the parallel [panels (a) and (c)] and perpendicular directions
[(b) and (d)]. Thick lines are for supported ribbons, where the rapid
spatial variation of κ+ and κ− is caused by the smaller internal mean
free path, limited to 67 nm by the substrate interactions. Thin lines
are for suspended ribbons, showing a much slower spatial variation
due to the larger internal mean free path, limited only by umklapp
phonon-phonon and isotope scattering.

of LER on the transport properties averaged across the GNR
would be to introduce an effective LER scattering rate for
the entire ribbon. Assuming linear regime and a uniform
temperature gradient, an effective phonon-LER scattering rate
is obtained by averaging the solution (7) across the ribbon20,21

R�q = τint.(�q)
[
τ−1

int. (�q) + τ−1
LER(�q)

]〈n�q(y)〉. (9)

Here, 〈. . .〉 denotes the spatial average over the y coordinate.
Combining Eqs. (3) and (9) and with the pBTE in Eq. (4), we
obtain for the LER rate

τ−1
LER(�q) =

∫ W

0
υ⊥

�q
∂n�q(y)

∂y
dy

/ ∫ W

0
n�q(y)dy,

which is evaluated analytically to obtain the final expression
for the LER scattering rate

τ−1
LER(�q) = υ⊥

�q
W

Fp(�q)

/[
1 − �⊥

int.(�q)

W
Fp(�q)

]
. (10)

The competition between line edge roughness scattering
and internal scattering mechanisms is encapsulated in the
parameter Fp, given by

Fp(�q) = [1 − p(�q)]{1 − exp[−W/�⊥
int.(�q)]}

1 − p(�q) exp[−W/�⊥
int.(�q)]

, (11)

which contains the full momentum and angle dependence of
line edge roughness scattering through the edge specularity
parameter p(�q).

When internal scattering is dominant (τ−1
int. > τ−1

LER, such as
in wide ribbons), the two edges become effectively decoupled,
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and the rate approaches τ−1
LER(�q) = (υ⊥

�q /W )[1 − p(�q)]. In
the opposite limit of narrow ribbons, where LER scattering
dominates, the rate converges to the well-known expression22

τ−1
LER(�q) = (υ⊥

�q /W )[1 − p(�q)]/[1 + p(�q)]. Given that 0 �
p(�q) � 1, the variation of the LER rate with the strength
of competing mechanisms is no larger than a factor of two.
However, we note that even when internal scattering is very
weak, it cannot be neglected from the derivation because the
assumption of no internal scattering (τ−1

int. = 0) would lead
to an unphysical situation where the solution n�q is constant
and equal everywhere to its value at the edges, implying
N�q(y) = N0

�q (T ) in the limit of completely diffuse (p = 0)
edges. Such a solution would lead to zero thermal conductivity
(or infinite LER scattering rate), which is unphysical and
consistent with the lack of the Casimir limit in ribbons.20

The LER scattering rate τ−1
LER(�q) in Eq. (10) can be added

to the substrate, umklapp phonon-phonon, and isotope (mass-
difference) scattering that have previously been considered.
With the phonon lifetime computed from all the relevant
scattering mechanisms, the full thermal conductivity tensor
Kαβ is obtained for the GNR as a sum over all phonon modes
and branches6,26

Kαβ(T ) = h̄

Aδ

∑
b,�q

υα
b (�q)υβ

b (�q)τb(�q)ωb(�q)
dN0

�q (T )

dT
, (12)

where δ = 0.335 nm is the thickness of the graphene
monolayer,16 A = LW is the area of the ribbon, τb(�q) is
the total phonon relaxation time for branch b and mode
�q, and υα

b (�q) is the αth component of the phonon velocity
vector calculated from the full phonon dispersion based on the
nearest-neighbor force constant model.27,28
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FIG. 3. (Color online) Comparison of lattice thermal conductivity
of a wide (W = 2 μm) graphene ribbon supported on SiO2 with
experimentally measured data from Ref. 12. Dashed lines are
calculated contributions by individual phonon branches and the
solid line is the total, showing excellent agreement with experiment
throughout the temperature range. At low temperatures, the dominant
contribution is from the out-of-plane acoustic (ZA) mode, which gets
suppressed by the strong substrate interaction above 100 K, where
in-plane modes take over.

III. THERMAL CONDUCTIVITY TENSOR IN SUPPORTED
GRAPHENE NANORIBBONS

In Fig. 3, we see that there is excellent agreement between
the experimental thermal conductivity data for 2 μm-wide
GNRs supported on SiO2 reported in Ref. 12 and the
theoretical thermal conductivity computed based on the tensor
in Eq. (12). In Fig. 4(a), the effective thermal conductivity of
a narrow ribbon (W = 15 nm), obtained from the tensor as
the average of directional conductivity over all angles (since
the experiment entails radial diffusion of heat), reproduces
the room temperature mean value of 80 W m−1 K−1 and
the range of measured data reported in Ref. 15. The parallel
and perpendicular components of the thermal conductivity
tensor differ in these narrow ribbons [Fig. 4(b)]. The κ ||/κ⊥
ratio, which captures the anisotropy of thermal transport,
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FIG. 4. (Color online) Effective lattice thermal conductivity of a
15-nm-wide graphene nanoribbon supported on a SiO2 substrate with
varying line edge roughness, ranging from 0.1 nm up to 1 nm. The
results agree well with the experimental data range reported for that
same width of ribbon in Ref. 15. (b) Polar plot of directional thermal
conductivity (radial coordinate, in units W/m·K) versus direction
(polar angle with respect to the longitudinal x axis), for temperatures
from 100 K to 400 K, in 100 K steps. The spatial anisotropy of thermal
conduction can also be depicted through the ratio of the parallel to
the perpendicular component of the thermal conductivity tensor in
(c). The ratio reaches a value of 3.5 at room temperature in the 15 nm
wide ribbon with 0.25 nm edge roughness.
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FIG. 5. (Color online) Dependence of the room-temperature
parallel (a) and perpendicular (b) lattice thermal conductivities on
the width W of supported graphene nanoribbons. Contributions of
each acoustic phonon branch, as well as the total, are shown. The
longitudinal acoustic (LA) phonons are the least affected by LER
scattering and have a dominant contribution to κ ||. In contrast, κ⊥

shows a steeper dependence on width W , with no clearly dominant
branch. The thin lines show the values for the suspended GNR
counterparts, demonstrating that the out-of-plane acoustic (ZA) mode
is the most suppressed by scattering with the substrate. The κ⊥/κ ||

ratio is shown in panel (c) for line edge roughness rms values ranging
from � = 0.1 nm to � = 1 nm. The anisotropy is stronger in narrower
ribbons, and ribbons with larger LER values due to the strong
dependence [shown in panel (d)] of the parallel and perpendicular
components of the LER mfp on width W .

reaches a value of 3.5 just below room temperature in narrow
(W = 15 nm) ribbons with rms edge roughness of � =
0.25 nm, as shown in Fig. 4(c).

As we have seen in Figs. 2(a) and 2(b), for ribbons thinner
than W ≈ 2�⊥

int., LER scattering dominates thermal transport.
A wider GNR can be divided into three separate regions
across: the two regions within a distance �⊥

int. from either edge,
wherein LER scattering dominates, and a region in the middle
where internal scattering dominates. As a result, thermal trans-
port in wider wires will be governed by a competition between
edge and internal scattering, with decreasing influence of edge
scattering as the width increases. Indeed, in Figs. 5(a) and
5(b) we see that the thermal conductivity in both parallel
and perpendicular directions increases quickly with increasing
ribbon width W up to the point where it reaches W ≈ 2�⊥

int.,
after which the increase slows down, corresponding to the mix

of internal and LER scattering. Both thermal conductivities
eventually saturate at the bulk value for widths of order micron.

In supported ribbons, the dominant internal scattering
mechanism is substrate scattering. We calculated the room-
temperature phonon mfp [Fig. 5(d)], due to substrate interac-
tions from Eq. (2) to be 67 nm, an order of magnitude smaller
than the umklapp-limited value of the mfp in suspended
graphene (677 nm6,16), which agrees with the drastic reduction
of thermal conductivity even in wide (W ≈ 2 μm), supported
ribbons (Ref. 12). Substrate scattering is spatially isotropic
because it depends only on the magnitude of the phonon
momentum. Consequently, the thermal conductivity tensor
in wide ribbons is nearly isotropic [Fig. 5(c)], making them
good omnidirectional heat spreaders. In contrast, heat flow in
narrow ribbons is dominated by the edge regions, where strong
anisotropy arises out of LER scattering and makes them better
suited as directional (longitudinal) conduits of heat.

IV. CONCLUSION

In summary, we have calculated the full thermal conduc-
tivity tensor in supported graphene nanoribbons on SiO2. We
show that thermal transport in GNRs is characterized by a
complex interplay between LER scattering and internal scat-
tering, as captured through an effective LER scattering rate that
depends not only on the surface roughness features, but also
on the strength of internal scattering mechanisms (substrate,
isotope, and umklapp phonon scattering). In suspended GNRs,
internal scattering mechanisms are fairly weak (the room-
temperature mfp 677 nm), so this interplay is difficult to ob-
serve; rather, LER scattering dominates and thermal transport
is spatially anisotropic for virtually any suspended GNR width.
In contrast, internal scattering in supported GNRs is dominated
by the substrate interactions and the mfp is an order of magni-
tude shorter (≈ 67 nm). As a result, thermal transport features
acquire a more prominent width dependence: lattice thermal
conductivity in narrow supported GNRs (W < 130 nm,
i.e., twice the mfp for substrate scattering) is dominated
by LER scattering and strongly spatially anisotropic. For
intermediate widths (130 nm < W < 1 μm) a competition
between LER and substrate scattering governs transport, while
the thermal transport in wide GNRs (W > 1 μm) is dominated
by substrate scattering and spatially isotropic.
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