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In nanoscale, quasiballistic devices, the process of relaxation towards a steady state cannot be
attributed to efficient carrier scattering, and can therefore no longer be described by the Boltzmann
equation. Instead, a nanodevice’s active region is an open quantum-mechanical system, and its
relaxation is determined by the process of decoherence due to the injection of carriers from the
leads. In this paper, a formalism that captures decoherence as the dominant mechanism of relax-
ation in nanodevices is introduced. By working within a projection-operator technique, commonly
used in the open systems theory, a Markovian approximation for an abstract open system’s evolution
is derived through coarse-graining of the exact short-time dynamics. This Markovian approxima-
tion faithfully represents the long-time stages of evolution, and correctly identifies the nonequilib-
rium steady state directly from first principles. Relaxation in a ballistic resonant-tunneling diode is
described in detail within the presented formalism, and the resulting steady-state I–V curve displays
the prominent resonant features.
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1. INTRODUCTION

The small and fast semiconductor device of the present
is an exciting quantum-mechanical system: it features vir-
tually collision-free transport, very few carriers in the
active region, significant inter-carrier correlations, and the
switching speed determined by the process of decoher-
ence due to interaction with the leads that supply both
charge and information. Since the device dimensions are
smaller than the carrier mean-free path even at room tem-
perature, solving the semiclassical Boltzmann transport
equation (BTE)1�2 to characterize transport ceases to yield
credible results. The main reason is that its premise—
frequent scattering governing relaxation—no longer holds,
so the very validity of the BTE as the kinetic equa-
tion is questioned. Significant efforts have been aimed
at establishing a full quantum transport description of
ultrasmall devices, the most widespread approaches being
the density matrix approach,3–8 Wigner functions,9–16 and
nonequilibrium Green’s functions.17–23 Recent work by
Fischetti24�25 shows that an adequate quantum descrip-
tion of small devices may be obtained by replacing the
Boltzmann equation with the Pauli master equation for the
diagonal elements of the density matrix, with the complex-
ity of the approach similar to Schrödinger-Poisson-Monte
Carlo solvers. However, in the presence of contacts, the
off-diagonal density matrix elements are appreciable,26�27

and neglecting them may violate current continuity.

The importance of treating a nanoscale device as
an open quantum system interacting with the contacts
was first thoroughly discussed by Pötz28 and Frensley,26

and more recently others.29–34 In the low-field, steady
state regime, the variant of nonequilibrium Green’s func-
tions formalism introduced by Datta and coworkers18�20�21

accounts for the open boundaries through a special injec-
tion self-energy term, where the electrons are injected from
each contact with the contact’s equilibrium distribution.
However, there is no kinetic theory showing that this is
indeed the steady state that the system relaxes to upon the
application of bias, nor how the results would look in the
high field regime or during the transients. It is now well
accepted that the treatment of contacts31�34�35 is crucial for
describing the relaxation in the absence of frequent scatter-
ing. However, a general description of the contact-induced
decoherence (nonunitary dynamics) in nanoscale devices
is lacking.

In this paper, I introduce the basics of a formalism
that captures the decoherence in a nanodevice’s active
region due to its interaction and particle exchange with the
contacts (reservoirs) as the essential mechanism through
which a steady state is achieved. In Section 2, I intro-
duce the core elements of the partial-trace-free (PTF)
technique36 for treatment of the dynamics of an abstract
open system. The PTF approach and the resulting equa-
tions with memory dressing,37 overviewed here, are a
special variant of a wide class of projection operator
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techniques,38�39 that are a popular way to treat open
systems (usually small ones) in quantum information the-
ory. In Section 2.2, we will focus on obtaining the long-
time limit of the evolution from first principles, and show
that it can be done via coarse-graining of the exact non-
Markovian evolution over very short times. The main point
of the paper is that the steady state of an open system,
such as the active region of a nanodevice, can be obtained
in completely general terms and without tracking all the
details of the evolution, just from the microscopic inter-
action Hamiltonians and the state of its environment, as
demonstrated at the end of Section 2.2. Proper relax-
ation has been demonstrated on two simple examples in
Section 2.3, and, in Section 3, the formalism is applied
to the case of a ballistic resonant-tunneling diode (RTD).
Steady-state distributions for the forward and backward
propagating states are calculated, and used to compute the
steady-state I-V curve, that properly displays all the reso-
nant features. The paper ends with concluding remarks in
Section 4.

2. NANODEVICE AS AN OPEN QUANTUM
SYSTEM—THE FORMALISM

In this section, I will introduce the basics of an open-
system formalism used to treat the dynamics of the
nanodevices. We will start by deriving a non-Markovian
dynamical law for the evolution of an abstract open sys-
tem’s density matrix. “Non-Markovian” means that the
memory effects are important,40 i.e., that the environ-
ment E retains memory on the timescale relevant for
the system evolution. In contrast, Markovian40–43 (mem-
oryless) evolution corresponds to the environment losing
memory on timescales much shorter than the system char-
acteristic times. Physically, environment typically loses
memory because of its large number of degrees of free-
dom, so that all the information obtained from the small
system gets dissipated over some correlation-decay time
of the environment. For instance, systems weakly coupled
to large, thermal environments will behave in a Markovian
fashion on timescales larger than the thermal time �/kBT ,
which is a typical time for the destruction of correla-
tions in a thermal environment. Markovian evolution is
characterized by an exponential decay of certain compo-
nents of the density matrix. A number of famous master
equations for the evolution of different open systems are
Markovian, such as the Pauli master equation,44 Caldeira-
Legget equation,45 Redfield equation,46 and optical Bloch
equations.47

2.1. Decomposition of the Liouville Space. Equations
with Memory Dressing

Let us consider an open system S, coupled with the
environment E, so that the composite SE is closed. These

systems are assumed to have finite-dimensional Hilbert
spaces, of dimensions dS, dE, and dSdE, respectively. Con-
sequently, their Liouville spaces—the spaces of operators
acting on the above Hilbert spaces—are of dimensions d2

S,
d2

E, and d2
Sd

2
E, respectively. The total SE Hamiltonian �

is generally a sum of a system part 1E ⊗�S, an environ-
ment part �E ⊗ 1S, and an interaction part �int. The total
Hamiltonian � (acting on the SE Hilbert space) induces
the total SE Liouvillian � (acting on the SE Liouville
space) through the commutator, which governs the evolu-
tion of the SE density matrix � according to the Liouville
equation

d�

dt
=−i	�� �
=−i�� (1)

Dynamics of the open system S is described by its reduced
density matrix �S, obtained from � by tracing out the envi-
ronment states

�S = TrE� (2)

In general, the dynamics of �S is not unitary. A common
approach to calculating the evolution of �S is by using pro-
jection operators38�39�47 that act on the SE Liouville space.
Typically, an environmental density matrix �E is chosen
to induce a projection operator P by P� = �E ⊗ TrE�,
where � is any vector from the SE Liouville space. Cou-
pled equations of motion for P� and 
1− P�� are then
solved, often in the weak-coupling limit, and the reduced
dynamics is obtained from �S = TrE�= TrE
P��.

Most often, the projection operator utilized is induced
by the initial environmental density matrix �E
0�.

47

The reason is that, in the most common approxi-
mation of initially decoupled S and E, described by
�
0�= �E
0�⊗�S
0�, the projection operator induced by
�E
0� will eliminate a certain memory term occurring
in the evolution of �S. However, the result for the final
dynamics must not depend on the projection operator used,
as projection operators are, after all, only auxiliary quanti-
ties. In this paper, we will follow the work on the partial-
trace-free approach of Ref. [36], that uses the projection
operator �P induced by the uniform environment density
matrix ��E = d−1

E diag
1 � � �1�. �P has a unique property: it
is the only projection operator that has an orthonormal
eigenbasis in which it is represented by a diagonal form.
Its unit eigenspace, of dimension d2

S, is a mirror-image of
the Liouville space of the open system S. Projecting onto
the unit eigenspace of �P is equivalent to taking the partial
trace with respect to environmental states,36 because for
any element of the SE Liouville space it holds


 �P�� ��� = d
−1/2
E 
TrE��

�� (3)

Here, the unit-eigenspace of �P is spanned by a basis � ����,
while the Liouville space of S is spanned by ����, where
the two bases are isomorphic through the following simple
relationship

� ���� = d
−1/2
E

dE∑
j=1

�j�� j�� (4)
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�i�� j�� is a basis in the SE Liouville space, induced by
the bases �ij� and ���� in the environment and system
Liouville spaces, respectively.

Decomposition of the SE Liouville space into the two
eigenspaces of �P (depicted in Fig. 1) is the essence of the
PTF approach: every vector � from the SE Liouville space
can be written as a column �= 	�1�2


T, where �1 belongs
to the unit eigenspace of �P and represents (up to a mul-
tiplicative constant

√
dE) the system’s reduced component

of �, i.e., �S ≡ TrE�=√dE�1. The other component, �2,
belongs to subspace 2 (the zero-eigenspace of �P ), where
the correlations between S and E reside. It is important
to note that the elements of subspace 2 (blue subspace in
Fig. 1) have zero trace over environmental states.

In a similar fashion, an operator A acting on the SE
Liouville space has a block-form with submatrices Apq, p,
q = 1�2, where A11 would be the system’s reduced com-
ponent of this operator. For instance, the block form of the
SE Liouvillian L is given by

L=
[
�11 �12

�21 �22

]

where �11 is commutator-generated, and corresponds
to an effective system Hamiltonian �S + TrE
�int�/dE.

Fig. 1. Decomposition of the total SE Liouville space into the
eigenspaces of the projection operator �P , induced by the uniform den-
sity matrix ��E. The unit eigenspace is equivalent to the system Liouville
space, where the equivalence is given by the isomorphism (3). Working
within the eigenspaces of �P removes the need for performing the partial
trace over the environmental states.

Off-diagonal, non-square Liouvillian submatrices, �12 and
�21 = �†

12, represent the S–E interaction as seen in the
composite Liouville space—when �int vanishes, so do �12

and �21. �22 can be perceived as governing the evolution
of entangled SE states, and tends to a form fixed by �S

and �E when the interaction is turned off.
Using the notation introduced above, the evolution of

the reduced density matrix �S can be represented by

�S
t�=�11
t�0��S
0�+
√
dE �12
t�0��2
0� (5)

where �11 and �12 are the submatrices od the SE evolution
operator �, given by

�
t�0� = Tc exp
(
−i
∫ t

0

[
�11 �12

�21 �22

]
dt

)

=
[
�11
t�0� �12
t�0�

�21
t�0� �22
t�0�

]

In Ref. [37], equations of motion for �11 and �12 were
derived as

d�11

dt
= −i
�11 −�12���11 (6a)

d�12

dt
= −i
�11 −�12���12 − i�12� (6b)

accompanied by the initial conditions �11
0�0� = 1 and
�12
0�0�= 0. Quantity � is the so-called memory dress-
ing, as it appears to “dress” the real physical interaction
�12 and yield an effective (generally complex) interac-
tion term, −�12�, that accompanies the hermitian term
�11, responsible for unitary evolution. Memory dressing
describes the cumulative effect of the S–E interaction,
as witnessed by a quadratic feedback term in its self-
contained matrix Riccati48�49 equation of motion (below).
The other new quantity occurring in (6), � 
t�0�, can be
perceived as the evolution operator for the states from sub-
space 2, and is important for the description of the influx
of information from E to S. � and � obey

d�

dt
= −i�22�− i��12�+ i��11 + i�21 (7a)

d�

dt
= −i
�22 +��12�� (7b)

accompanied by �
0�= 0 and � 
0�0�= 1.
Equations (6) and (7) are exact:37 they are an alternative

form of the SE Liouville Equation (1). The resulting exact
evolution of the reduced density matrix can be expressed
through the following differential equation of motion

d�S
t�

dt
= −i	�11 −�12�
t�
�S
t�

− i�12

√
dE� 
t�0��2
0� (8)

which is a partial-trace-free form of d�S/dt = TrE
−iL��.
J. Comput. Theor. Nanosci. 4, 749–760, 2007 751
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If we restrict our attention to the evolution starting from
an initially uncorrelated state of the form

�
0�= �E
0�⊗�S
0� (9)

it is possible to completely reduce the problem to sub-
space 1. Namely, it is possible to write

�2
0�=��1
0�= d
−1/2
E ��S
0� (10)

where the mapping � is completely determined by the
components of �E
0�, the initial environment density
matrix.50 Equation (10) embodies the argument made
by Lindblad51 that a subdynamics exists only for an
uncorrelated initial state, because, as a consequence of
(5) and (10), it is possible to write

�S
t�= 	�11
t�0�+�12
t�0��
�S
0� (11)

so the evolution is completely described on the Liouville
space of the open system. Consequently, when (10) is sub-
stituted into (8), we obtain

d�S
t�

dt
=−i	�11 −�12�
t�
�S
t�− i�12� 
t���S
0�

(12)

2.2. Long-Time Markovian from the Short-Time
Non-Markovian Decoherence

Equation (12) is in principle impossible to solve exactly,
and typically expansion up to the second or fourth order
in terms of the interaction is undertaken. For a compre-
hensive overview of the time-convolutionless projection
operator technique, see Chapter 4 of Ref. [47]. Unfor-
tunately, the resulting equations can violate positivity of
the density matrix, which can potentially lead to unphysi-
cal results. Furthermore, in solid state physics one cannot
always justify the weak-coupling approximation, such as
in the case of carrier-carrier interaction. However, there are
other simplifications we can make to address decoherence
in nanoscale devices:
(1) First, the details of transient are often not important
per se, especially in devices used for digital applications.
A good estimate of the relaxation time is usually enough.
(2) Along the same lines, a good approximation for the
non-equilibrium steady state is perhaps the most important
information that needs to come from any simulator of a
device used for digital applications.
(3) The full density matrix of the whole electronic sys-
tem is not needed. Usually, the few lowest order Green’s
functions are enough to characterize current transport.

Therefore, we need to find a good, numerically tractable
way to obtain the nonequilibrium steady state many-body
density matrix in a general form, so that we would be
in principle able to extract the single-particle Green’s
functions we typically use for transport calculations.

In the rigorous theory of open systems, it is well-
known from the seminal work of Davies43 that the
exact non-Markovian evolution, described by (12), can be
approximated via a Markovian map (local in time) on
appropriately rescaled timescales (i.e., in the so-called van
Hove limit)41�42 when one is dealing with a system weakly
coupled to a large environment. Here, we want to pose
the problem somewhat differently: Suppose that, on the
timescales of interest in experiment, you are confident
that you will observe Markovian-type evolution [exponen-
tial decay towards a steady state], and that you have lit-
tle interest in the short-time, non-Markovian effects. How
do you obtain this Markovian evolution from the micro-
scopic model Hamiltonians and the initial state of the
environment? There are several ways to obtain Markovian
equations from non-Markovian ones, depending on the
premises used. Among them is the approach of coarse
graining the non-Markovian evolution with respect to the
time over which the environment retains memory. Coarse
graining, although shown to retain the complete positivity
of the map (12),52 always carries a degree of arbitrari-
ness as to how long the coarse graining time is actually
supposed to be.43

Here, we will postulate the following: For a non-
Markovian open system coupled to a large bath, which
exhibits Markovian evolution in the long-time limit, there
exists a coarse-graining time � that is shorter than any
timescale characteristic for either the system or the envi-
ronment, such that the Markovian evolution obtained by
coarse graining over � is the same as the long-time limit
of the exact non-Markovian evolution.

The ultrashort � enables us to utilize the short-time
expansion of the exact non-Markovian evolution, which
we can deduce relatively straightforwardly from the initial
preparation of S and E and the Hamiltonians, to obtain
the eventual long-time steady state! A formal proof of the
postulate for boson baths in the limit of weak coupling
will be published elsewhere.50 It is very important to note
that � is a mathematical coarse-graining time, it is not the
physical time corresponding to a decay of environmental
correlations (which is of order �/kBT for thermal bosonic
baths, for example). Indeed, in Section 2.3, on an exactly
solvable model we will indeed show that � sets by far the
shortest timescale in the system.

So we will first rewrite the exact non-Markovian evolu-
tion compactly as

�S
t�= Tc exp
[
−i
∫ t

0
�eff
��d�−�
t�

]
�S
0� (13)

where �eff
t� is a still undetermined effective Liouvillian,
and �
t� is the decoherence exponent. This form holds
without the loss of generality;40 for instance, it defi-
nitely holds in the Markov approximation, where the
so-called semigroup generator −i�eff −d�/dt= const., of
the well-known Lindblad form,53�54 generates a so-called
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completely positive evolution. Complete positivity of a
dynamical map means that the unit trace and positivity of
the density matrix are preserved at all times, but also that
the evolution is robust enough to support tensor products—
for example, two noninteracting systems evolving accord-
ing to completely positive maps can together be described
by a tensor product of those maps, itself a completely
positive map.

We will perform the short-time Taylor expansion of the
exact Equation (12) up to the second order in time(

d�S

dt

)
0

=
[
−i�eff
0�−

(
d�

dt

)
0

]
�S
0� (14a)

(
d2�S

dt2

)
0

=
[
−i
(
d�eff

dt

)
0

−
(
d2�

dt2

)
0

]
�S
0�

+
[
−i�eff
0�−

(
d�

dt

)
0

]2

�S
0� (14b)

which will then help us identify the short-time incarnations
of the effective Liouvillian and the decoherence expo-
nent � , that we will later be able to use for coarse graining.
Without going into the details, we obtain

�eff
0� = �11 +�12�= 	�S +
�int�� � � �
�(
d�eff

dt

)
0

= 0
(15a)

(
d�

dt

)
0

= 0�
(
d2�

dt2

)
0

= 2� (15b)

where 
· · · � = TrE
�E
0� · · · � denotes the partial environ-
mental average with respect to the initial environmental
state �E
0�, and the operator � is defined as

�
��
�′�′ = 1

2

∑
k

�kE

{

� 2

int�
k�
k�′�

�′
� −2

∑
k′

�int�

k′�
k�′
�int�

k�′
k′�

+ 
� 2
int�

k�′
k�′�

�
�′

}

− 1
2

{


�int�2���′�

�′
� −2
�int���′ 
�int��

′
�

+ 

�int�2�
�′
� �

�
�′

}
(16)

Operator � contains essential information on the directions
of coherence loss in both non-Markovian and Markovian
systems, and −� is of the special form expected from
a Lindblad dissipator to generate completely positive
Markovian evolution. It has been implicitly defined pre-
viously (see, e.g., Refs. [40, 43, 47]) under the constraint
of vanishing environmental average of the interaction
(
�int� = 0), and typically occurs in conjunction with the
interaction picture and the weak coupling limit [compare
Eq. (4.14) in Ref. [40] with Eq. (17)]. Here, we have
arrived at � for arbitrary interaction strength and with-
out leaving the Schrödinger picture or requiring a van-
ishing bath average of the interaction (the latter point is

important for the inclusion of carrier–carrier scattering in
nanostructures).

Up to the third order in time, Eq. (13) can now be
approximated as

�S
t�= e−i�eff t−�t2+o
t3��S
0� (17)

where �eff ≡ �eff
0�. Now, on the time interval 	0� �
,
where according to our postulate � is shorter than any
other relevant timescale in the problem, Eq. (17) should
be valid. If we coarsen over this interval, we obtain

�S
��−�S
0�
�

=
(
−i�eff −

d�

dt

∣∣∣∣
	0� �


)
�S
0� (18)

where
d�

dt

∣∣∣∣
	0� �


=
∫ �

0 2�t dt

�
=��

Since the memory is reset after each � , we can partition
the time axis into intervals of length � , tn = n� , so that
the environment is assumed to interact with the system in
exactly the same way during each interval 	tn� tn+1
.

52�55

Resetting of memory means �
t+n � = �
0+� = 0, after
which � again starts evolving quadratically as �
t ∈
	t+n � t

−
n+1
�=�
t− tn�

2. On this interval,

d�

dt

∣∣∣∣
	tn� tn+1


=
∫ t−n+1

t+n
2�
t− tn�dt

�
=��

Moreover, due to the memory loss at tn, the “nitial” system
state for the evolution on 	t+n � t

−
n+1
 becomes �S�n = �S
tn�.

As a result

�S� n+1 −�S� n

�
=
(
−i�eff −

d�

dt

∣∣∣∣
	tn� tn+1


)
�S� n

= 
−i�eff −����S� n (19)

The term on the left approximates the first derivative,
so the system’s evolution over � results in a completely
positive Markovian dynamical map

d�S

dt
= 
−i�eff −����S
t� (20)

The nonzero eigenvalues of �, multiplied by � , define a
set of new characteristic times for the system evolution,
and for for the Markovian approximation to be consistent,
it must hold47  �2 � 1, where  is the largest eigenvalue
of � (which can be very large for bosonic environments).
The eventual steady state must clearly be a density matrix
belonging to � 
�eff�∩� 
��, the intersection of the null-
spaces of �eff and �. Therefore, one can pinpoint the
steady state as the component of the initial state belonging
to � 
�eff�∩� 
��. The steady state does not depend on
the actual value of � ; the existence of an ultrashort (but
nonzero!) � was important to be able to utilize the short
time expansion of the exact evolution to the shortest order.
Once the coarse-graining was justified, the actual value
of � is irrelevant as long as we are only interested in what
the steady state is, but not in how long it takes to get to it.

J. Comput. Theor. Nanosci. 4, 749–760, 2007 753
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2.3. Reality Check: Two Simple Examples

On the following two simple examples we will answer the
two most important questions that arise about the use of
Eq. (20):
(1) Is the time � really as short as we claim?
(2) Will we indeed obtain relaxation towards the correct
steady state?

The first question will be answered on the example of
an exactly solvable model—the spin-boson Hamiltonian
with pure dephasing, on which we can actually calculate �
and show it is ultrashort. The second question will be
answered by showing proper relaxation on both the spin-
boson model and the Jaynes-Cummings Hamiltonian, used
to describe relaxation of an excited atom in the presence
of a thermal bath of photons of resonant energy. Ques-
tions 1 and 2 are answered more formally in a forthcoming
publication.50

2.3.1. Spin-Boson Model with Pure Dephasing

One of the few analytically solvable52�56–60 open sys-
tem problems is that of a two-level system coupled to a
dephasing-only boson bath, with the relevant Hamiltonians
are given by

�S = !

2
"z� �E =∑

�q
$q

(
b†�qb �q +

1
2

)

�int =
∑
�q
"z
{
g
$ �q�b �q +g
$ �q�

∗b†�q
}

(21)

Here, "z is the Pauli matrix, b†�q and b �q and the boson
creation and annihilation operators of the q-th boson mode,
respectively, ±!/2 are the system energy levels (divided
by �), and $q is the boson mode frequency. The boson
modes are initially in a thermal state with 
nq� = 
b†qbq� =
1/
exp
�$q/kBT �−1�. Because of the interaction linear
in environment creation/annihilation operators, 
�int� = 0,
so �S =�eff , [see Eq. (15a)]:

�eff =�S = !




0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0


 (22)

where the rows/columns are ordered as 1 = �+�
+�, 2 =
�+�
−�, 3 = �−�
+�, 4 = �−�
−� (± refer to the posi-
tive/negative (upper/lower) energy state). Operator � can
be calculated according to (16) as

� =  d




0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0




 d = 2
∑
�q
�g
$ �q��2 coth

(
�$q

2kBT

)

= 2
∫ �

0
d$�
$��g
$��2 coth

(
�$

2kBT

)
(23)

where �
$� is the density of boson states.
�S and � obviously commute, and their common zero

eigenspace [� 
�� = � 
�eff�] contains all density matri-
ces with zero off-diagonal elements. This means that, for
a given initial density matrix, the off-diagonal matrix ele-
ments will decay to zero while the diagonal elements
remain unchanged:

	�S
t�
++ = 	�S
0�
++� 	�S
t�
−− = 	�S
0�
−−

	�S
t�
+− = 	�S
0�
+−e
−i!t− d�t� 	�S
t�
−+

= 	�S
0�
−+e
+i!t− d�t

The steady state will be determined by simply annulling
the off-diagonal elements. This is the correct steady state,
as shown in the exact solution.47

The decoherence exponent �
t� in the exact solution
behaves as

�
t�=
∫ �

0
d$2�
$��g
$��2 coth

(
�$

2kBT

)
sin2
$t/2�

$/2�2

(24)
For short-times, �
t� ≈  dt

2, as should be expected,
because we know our expansion (17) is exact up to
the second order in time. In the long-time limit for
�
t�, only the low frequency contributions survive, since
limt→� sin2
$t/2�/
$/2�2t = 2'�
$�, so

�
t→��= t lim
$→0

2'�
$��g
$��2 coth
(

�$

2kBT

)
(25)

We need to match this long-time behavior of �
t� with our
coarse-grained term  d�t, in order to obtain � .

� = lim
t→�

�
t�

 dt
= lim$→0 2'�
$��g
$��2 coth

(
�$/2kBT

)
2
∫�

0 d$�
$��g
$��2 coth
(
�$/2kBT

)
(26)

Let us consider the example of an Ohmic bath
(e.g., page 228 of Ref. [47]), with �
$��g
$��2 =

1/4�$ exp
−$/$c� and $c being a density-of-states cut-
off frequency. Typically, �$c � kBT . In the numerator,
one can approximate coth 
�$/2kBT �≈ 2kBT /�$, while
the coth function in the denominator is always greater
than 1, yielding

� <

(
kBT

�$C

)
2'
$c

� 2'
$c

Being typically the largest frequency scale in the full SE
problem, $c sets the shortest physical timescale. Clearly,
� is even shorter than the period associated with $c, which
justifies our use of the short-time expansion and subse-
quent coarse-graining.
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Note the long-time behavior exp
−t/�T � of the deco-
herence term � , where �T = �/'kBT is the thermal cor-
relation time. However, our time � is the mathematical
coarse-graining time, which is very short. The relationship
between the correct physical correlation loss time and the
mathematically appropriate time is  d��T = 1.

2.3.2. Jaynes-Cummings Model in the Rotating Wave
Approximation

The Jaynes-Cummings Hamiltonian in the rotating-wave
approximation61–64 describes the decay of a two-level sys-
tem in the presence of a single boson mode of resonant
frequency. The relevant Hamiltonians are

�S = 1
2
!"z� �E = !

(
b†b+ 1

2

)

�int = g
b†"−+b"+� (27)

Here, "z, "+ = 
"x + i"y�/e, and "− = 
"x − i"y�/2 are
the Pauli matrices, b† and b are the boson creation and
annihilation operators, respectively, ±!/2 are the system
energy levels (in units of frequency) and ! is also the
boson mode frequency, and g is a parameter measuring the
interaction strength. The boson mode to initially in a ther-
mal state with 
n� = 
b†b� = 1/
exp
�!/kBT �−1�. As in
the spin-boson example, �eff =�S because of the interac-
tion linear in environment creation/annihilation operators
[see (15a)]:

�eff =�S = !




0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0


 (28)

Operator � can be calculate according to Eq. (16) as

�= g2

2




2
n�+2 0 0 −2
n�
0 2
n�+1 0 0

0 0 2
n�+1 0

−2
n�−2 0 0 2
n�



(29)

�S and � commute, and we immediately note two com-
mon one-dimensional eigenspaces: �+− is associated with
the �S and � eigenvalues ! and g2
2
n�+ 1�/2, respec-
tively, while �−+ is associated with the eigenvalues −!
and g2
2
n�+1�/2.

On the other hand, the space spanned by �+�
+� and
�−�
−� is the null space of �eff . Solving the eigenproblem
of � reduced to this space gives

det

[
g2

n�+1�− −g2
n�
−g2

n�+1� g2
n�− 

]
= 0 (30)

 = 0 and  =  d ≡ g2
2
n�+1�

An eigenvector �0 = 
�0
++��

0
−−�

T corresponding to the
zero eigenvalue of the matrix � is characterized by

�0
−− = �0

++

n�+1

n� (31)

If we are looking for a density matrix that belongs to the
zero eigenspace of �, it also has to satisfy the constraint
of the unit trace, which fixes

�0
++ = 
n�

2
n�+1
� �0

−− = 
n�+1
2
n�+1

(32)

One recognizes these components as the thermal equilib-
rium values of the population of the upper and lower level
of our two-level system, respectively (see, for instance,
p. 149 of Ref. [47]). Therefore, by seeking the steady
state in � 
��∩� 
�eff�, we have obtained the physically
correct result.

3. THE RESONANT-TUNNELING
DIODE (RTD)

A resonant-tunneling diode is a two-barrier tunneling
structure. Typical dimensions of both the barriers and
the well range from 2 to 5 nm. The barriers are usu-
ally AlGaAs, while the well is GaAs, all grown by MBE.
RTD is a popular model system due to its pronounced
quantum-mechanical features and one-dimensional trans-
port. The best RTD transport results have been obtained
using Wigner-function techniques.9�10�26�65

The interaction between the active region and the con-
tacts has so far been addressed within the model on the
RTD as a two-level system, where the electron can either
be in in the RTD bound state (“+” state) or absent from
the RTD (“−” state).66 However, since the RTD naturally
has open boundaries and continuous spectrum, as one finds
in any quantum-mechanics textbook, the two-level models
must usually be supplemented with a phenomenological
resonance width to account for the fact that there are quite
a few plane waves from the contact that contribute to the
making of the bound state. Moreover, the continuum-state
current increase after the valley cannot be captured by
employing a two-level model for the RTD. The openness
of the RTD active region has also been addressed in the
works of Frensley26 and Pötz,28�67 as well as in the work of
the Purdue group,18�20�21 where the contacts are accounted
for through a special injection self-energy term.68

A schematic of the simulated RTD under bias is given in
Figure 2: the RTD well width is 3 nm, each barrier’s thick-
ness is 5 nm, and the barrier height is 0.3 eV. The Fermi level
in each contact is at 0.1 eV, below the equilibrium bound
state, which is at 0.15 eV. A negative bias V is applied to the
left contact, and, for simplicity, we will assume that all of
the voltage drop occurs across the well and barriers. While
still focusing on the active region/contacts interaction, we
will offer an RTD model different from those previously
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published. We will retain the wave picture in the RTD: for any
given energy 	k = �

2k2/2m above the bottom of the higher,
left contact, the single particle Hamiltonian of the RTD has
doubly degenerate eigenfunctions: the forward-propagating
state (not a plane wave!) /k, and the backward-propagating
state /−k. These wavefunctions are not plane waves; rather,
they are associated with plane waves being incident onto
the barrier from the left and right contacts, respectively, and
have the following behavior to the far left and right of the
heterostructure:

/k
x→−�� = eikx+ r−k�Le
−ikx

/k
x→+�� = tk′�Re
ik′x (33a)

/−k
x→+�� = e−ik
′x+ rk′�Re

ik′x

/−k
x→−�� = t−k�Le
−ikx (33b)

where k and k′ are the wavevectors in the left and right
contact, respectively, that correspond to the same energy:
k2 = 2m	k/�

2 = k′2 − 2meV /�2. We will use k and −k
associated with this energy to label the forward and back-
ward propagating states, respectively, even though the
backward propagating states are actually injected with −k′.
The subscripts in the transmission and reflection coeffi-
cient denote the final wavevector and contact (for instance,
reflected wave originally incident from the left with k, has
the wavevector −k and remains in the contact L, thus nota-
tion r−k�L). What is important is that we adopt a potential
profile (or, in numerical calculation, couple with a Poisson
solver) that will enable us to solve for /k and /−k and find
the transmission and reflection coefficients of the forward
and backward propagating plane waves. Here, a simple lin-
ear potential drop across the well and barriers is adopted.
Associated with /k (/−k) in the active region are the cre-
ation and destruction operators d†k and dk (d†−k and d−k),
so that active region Hamiltonian is described by

�S =
∑
k

!k
d
†
kdk+d†−kd−k� (34)

where !k = 	k/�. It is important to note that the discus-
sion in this section disregards the spin quantum number,
which only adds to the degeneracy. The resulting currents
at the end of the section should be considered “per spin
orientation.”

In addition, the active region communicates with the
reservoirs of charge—the contacts. We introduce a model
interaction for the coupling between the eigenfunctions /k

from the active region and the forward propagating plane
waves, injected from the left contact and associated with
the creation/annihilation operators c†k�L and ck�L, as well as
the resulting transmitted and reflected waves (associated
with c†k′�R/ck′�R and c†−k�L/c−k�L, respectively):

�int�+ = ∑
k>0

3L
k�4
c
†
k�L+ r∗−k�Lc

†
−k�L�dk

+d†k
ck�L+ r−k�Lc−k�L�5

+3R
k
′�4t∗k�Rc

†
k′�Rdk+ tk�Rd

†
kck′�R5 (35)

This model interaction is plausible for fully coherent trans-
port, because we couple the states with the same energy
only; no scattering from phonons will be included in this
picture. 3R and 3L are the constants that in principle
depend on the barrier thickness, accumulated charge near
the RTD etc. For the time being, we will assume they are
known. Similar to (35), the interaction of the backward-
propagating waves, and the reflected and transmitted wave
stemming from it, with the active region is given by:

�int�− = ∑
k>0

3R
−k′�4
c†−k′�R+ r∗k′�Rc
†
k′�R�d−k

+ d†−k
c−k′�R+ rk′�Rck′�R�5

+ 3L
−k�4t∗−k�Lc†−k�Ld−k+ t−k�Ld
†
−kc−k�L5 (36)

When we put it all together, we have for the interac-
tion Hamiltonian of the active region with the left/right
contact:

�int�L = ∑
k>0

3L
k�4
c
†
k�L+ r∗−k�Lc

†
−k�L�dk

+d†k
ck�L+ r−k�Lc−k�L�5

+ 3L
−k�4t∗−k�Lc†−k�Ld−k+ t−k�Ld
†
−kc−k�L5 (37a)

�int�R = ∑
k>0

3R
−k′�4
c†−k′�R+ r∗k′�Rc
†
k′�R�d−k

+ d†−k
c−k′�R+ rk′�Rck′�R�5

+ 3R
k
′�4t∗k′�Rc

†
k′�Rdk+ tk′�Rd

†
kck′�R5 (37b)

Since all the interaction Hamiltonians are linear in the con-
tact creation and destruction operators, and we assume that
the initial states of the contacts are thermal-equilibrium
grand-canonical ensembles, 
�int�L/R�= 0. This means that
�S = �eff , and also leaves us with only the first three
terms in Eq. (16) for � to calculate. One can show that
�=�L+�R, where


�L/R�
���
�′��′ = 1

2

(

� 2

int�L/R���′�
�′
� +
� 2

int�L/R��
′

� �
�
�′

−2
∑
i� j

�iL�R
�int�L/R�
j�
i�′
�int�L/R�

i�′
j�

)
(38)

The first and the second term in Eq. (38) give a general
contribution of the form �

��
��, since


� 2
int�L� =

∑
k>0

32
L
k�4

nk�L�+ �r−k�L�2
n−k�L��dkd†k

+ 	
1−
nk�L��+ 
1−
nk�L���r−k�L�2
d†kdk�5
+3L
−k�4
n−k�L��t−k�L�2d−kd

†
−k

+ 
1−
n−k�L���t−k�L�2d†−kd−k5 (39)

preserves the filling of states.
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In contrast, the third term in (38)∑
i� j

�iL
�int�L�
j�
i�′
�int�L�

i�′
j�

= ∑
k>0

32
L
k�4	
1−
nk�L��

+ 
1−
n−k�L���r−k�L�2

dk���′
d
†
k�

�′
�

+ 	
nk�L�+
n−k�L��r−k�L�2

d†k���′
dk�
�′
� 5

+32
L
−k�4
1−
n−k�L���t−k�L�2
d†−k���′
d−k�

�′
�

+
n−k�L��t−k�L�2
d†−k���′
d−k�
�′
� 5 (40)

gives a contribution of the form ���
��.

Each term in � attacks only single particle states with
a given k, so in reality we have a multitude of two-level
problems, where the two levels are the particle being in
k (“+”) and the particle being absent from k (“−”). In
each of these 4-dimensional subspaces (see the two-level
examples in Section 2.3), �S is zero in the space spanned
by �+�
+� and �−�
−�, so to find the steady state we need
to deal only with the diagonal components �++

k and �−−
k ,

which can be shown to obey

d�++
k

dt
= −a�++

k +b�−−
k (41a)

d�−−
k

dt
= a�++

k −b�−−
k (41b)

where

a = �432
L
k�	
1−
nk�L��+ 
1−
n−k�L���r−k�L�2


+32
R
k

′�
1−
nk′�R���tk′�R�25
b = �432

L
k�	
nk� L�+
n−k�L��r−k�L�2

+32

R
k
′�
nk′�R��tk′�R�25 (42)

Clearly, 
d�++
k /dt� + 
d�−−

k /dt� = 0, as it should
be, because �++

k = Tr
�Sd
†
kdk� = f 
k� and �−−

k =
Tr
�Sdkd

†
k�= 1− f 
k�.

Therefore, we can write df 
k�/dt =−
a+b�f 
k�+b,
so in the steady state f�
k� = b/
a+ b�. When written
in the notation more common in transport 
n±k�L/R� ≡
fL/R
±k� (the Fermi distribution in the left/right con-
tact), we obtain the steady-state distribution for the
forward-propagating states /k:

f�
k�=
b

a+b

= 32
L
k�	fL
k�+�r−k�L�2fL
−k�
+32

R
k
′�fR
k′��tk′�R�2

32
L
k�
1+�r−k�L�2�+32

R
k
′��tk′�R�2

(43a)

Similarly, one obtains for the backward propagating
states
f�
−k�

= 32
R
−k′�	fR
−k′�+�rk′�R�2fR
k′�
+32

L
−k�fL
−k��t−k�L�2
32
R
−k′�
1+�rk′�R�2�+32

L
−k��t−k�L�2
(43b)

In the simplest approximation, 3L = 3R = 3, and

f�
k� =
fL
k�
1+�r−k�L�2�+ fR
k

′��tk′�R�2
1+�r−k�L�2 +�tk′�R�2

(44a)

f�
−k� =
fR
k

′�
1+�rk′�R�2�+ fL
k��t−k�L�2
1+�rk′�R�2 +�t−k�L�2

(44b)

In equilibrium, we automatically obtain f�
k�= f�
−k�=
fL = fR. Note how, only if the transmission is low
do f�
k� → fL
k� and f�
−k� → fR
k

′�, which is the
assumption most often used in mesoscopic calculations,
but we see may not be entirely justified. If there is appre-
ciable transmission, the active region feels the distributions
in both contacts.

The current (per spin orientation) can be calculated
according to the quantum-mechanical relationship

j�
x� =
−e�
2mi

∑
k>0

f�
k�
[
d/ ∗

k 
x�

dx
/k
x�

−/ ∗
k 
x�

d/k
x�

dx

]
�/k�−2

+ f�
−k�
[
d/ ∗

−k
x�
dx

/−k
x�

−/ ∗
−k
x�

d/−k
x�
dx

]
�/−k�−2

= ∑
k>0

f�
k�jk
x�+ f�
−k�j−k
x� (45)

Each of the two current components, carried by the for-
ward and backward propagating states, is constant across
the structure. The simplest way to calculate them is by
focusing on the regions far from the barriers, where the
wavefuctions are plane waves. So to the far right of the
heterostructure

j+� = −e�
2mi

∑
k>0

f�
k�
�tk�R�2
2ik′�

�/k�2

= −e�
m

W

2'

∫ �

0
dkf�
k�

�tk�R�2k′
�/k�2

(46)

= −eW
h

∫ �

0
d	f�	k
	�



 
	�

�/k
	��2
(47)

where we have used that �t
k�R��2k′/k= 
 
	�, the trans-
mission coefficient that is the same for both directions and
a function of energy only, and kdk = md	/�2. Also, W
is the total width of the active region (the well, the barri-
ers, and a large enough portion of the contacts to get to
the flat band condition). Similarly, the current component
(per spin) carried by the backward propagating states can
be found as

j−� = eW

h

∫ �

0
d	f�	−k
	�



 
	�

�/−k
	��2
(48)

so the total current (per spin orientation) can be found as

j� = −eW
h

∫ �

0
d	

(
f�	k
	�

�/k
	��2

− f�	−k
	�

�/−k
	��2

)

 
	� (49)
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eV

µ

Fig. 2. Schematic of a resonant-tunneling diode under bias. The barrier
thickness in the simulated device is 5 nm, the well width 3 nm, and
the barrier height 0.3 eV. For simplicity, the voltage drop is assumed
to occur completely across the well and barriers. The Fermi level � in
each contact is taken to be 0.1 eV, located below the bound state in
equilibrium, which is at 0.15 eV.

Note that this expression is completely parameter-free, and
�/±k�2 in the denominator scale as ∼W . Namely, in the
case we take a very large portion of each contact as part
of the active region, then �/±k�2 ≈ 
1 + �r±k�2�W/2 +
�t±k�2W/2 = W/2	2 − 
 
	� + 
 
	�
	/
	+ eV ��±1/2
.
Therefore, the current can be approximated as

japprox
� = −2e

h

∫ �

0
d	

(
fL
	�	2−
 
	�
+ fR
	+ eV �
 
	�
	/
	+ eV ��1/2

	2−
 
	�+
 
	�
	/
	+ eV ��1/2
2

− fR
	+ eV �	2−
 
	�
+ fL
	�
 
	�
	/
	+ eV ��−1/2

	2−
 
	�+
 
	�
	/
	+ eV ��−1/2
2

)

 
	�

(50)
Figure 3 shows the I–V curve of the RTD from Figure 2,
as calculated according to the exact expression (49), the
approximate formula (50), and the Landauer formula for
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Fig. 3. Steady state I–V curve for the RTD of Figure 2, according to
the exact expression (49) (bold solid curve), the approximate formula
(50) (dashed curve), and the Landauer formula (51) (thin solid curve).
Landauer formula predicts a much higher peak current and a lower peak
voltage, because it does not account for the distribution functions’ devi-
ation from the contact equilibrium distributions (see Fig. 4), which is
important near transmission peaks.
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Fig. 4. (Top panel) Steady-state distribution for the forward [f 
+k�]
and backward [f 
−k�] propagating states, at the peak voltage (0.175 V)
and very near the valley voltage (0.28 V). Note significant deviations
from the Fermi-Dirac equilibrium distributions in the leads, which coin-
cide with the transmission peaks in the bottom panel (Note: energy scales
in the two panels are different). (Bottom panel) Transmission coefficient
in equilibrium, at the peak voltage (0.175 V), and very near the valley
(0.28 V) of the I–V curve in Figure 3. As the voltage increases, the trans-
mission peak corresponding to the bound state decreases in magnitude
and shifts towards lower energies, eventually vanishing at the valley bias.

the current per spin orientation

jL� = −e
h

∫ �

0
d	 	fL
	�− fR
	+ eV �

 
	� (51)

The width of each contact that is considered part of the
active region is 20 times the width of the well and bar-
riers combined. We see that the Landauer formula (51)
predicts the peak at a lower voltage and significantly over-
estimates the peak current with respect to the exact solu-
tion (49). The reason is that the distribution functions for
the forward and backward propagating states (top panel
of Fig. 4) coincide with the distribution functions for the
left and right reservoirs only where the transmission is
not high. There are significant deviations in these distri-
bution functions from the reservoir Fermi-Dirac distribu-
tion functions, which coincide with the transmission peak
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energies (bottom panel of Fig. 4)—a transmitting nano-
structure feels the Fermi distributions in both contacts.
Both (49) and (51) describe ballistic transport, so no cross-
ing of the curves typical for the inclusion of inelastic scat-
tering should be expected. The only difference between
(49) and (51) is that (49) captures the pronounced nonlocal
nature of tunneling. The agreement between the approxi-
mate expression (50) and the exact solution (49) is clearly
very good.

4. SUMMARY AND CONCLUDING REMARKS

This work described the formalism that is capable of
capturing the decoherence in quasiballistic nanodevices,
occurring due to the active region-contact interaction, as
the principal mechanism that governs relaxation. Starting
from the non-Markovian dynamics of an abstract open
system, we first showed that the long-time Markovian
behavior can be obtained through coarse-graining of the
exact evolution over ultrashort times. This enabled us
to obtain Markovian relaxation, and consequently iden-
tify the proper steady state, directly from first princi-
ples (the details of the microscopic Hamiltonians and the
state of the environment). The steady state must belong
to the intersection of the null spaces of an effective sys-
tem Liouvillian and a dissipative operator �, quadratic
in the interaction. Using the presented approach, we
obtained the proper equilibrium state on the examples
of the spin-boson model with pure dephasing and the
Jaynes-Cummings Hamiltonian. Finally, the problem of a
ballistic resonant-tunneling diode was addressed in detail.
We explicitly calculated the steady state distributions of
the forward and backward propagating states, and showed
that, when the transmission through the structure is high,
the active region “feels” the distributions in both contacts.
The nonequilibrium distribution functions actually have
peaks/dips at the energies corresponding to transmission
maxima. The resulting steady-state I–V curve shows the
prominent resonant features without any free parameters,
with a higher peak voltage and lower peak current than
predicted by the Landauer formula. This work will hope-
fully contribute to the understanding of decoherence and
relaxation in nanodevices, and facilitate the exploitation of
the open system techniques in quantum transport theory.
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