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The active region of a ballistic nanostructure is an open quantum-mechanical system, whose nonunitary
evolution �decoherence� toward a nonequilibrium steady state is determined by carrier injection from the
contacts. The purpose of this paper is to provide a simple theoretical description of the contact-induced
decoherence in ballistic nanostructures, which is established within the framework of the open system theory.
The active region’s evolution in the presence of contacts is generally non-Markovian. However, if the contacts’
energy relaxation due to electron-electron scattering is sufficiently fast, then the contacts can be considered
memoryless on time scales coarsened over their energy-relaxation time, and the evolution of the current-
limiting active region can be considered Markovian. Therefore, we first derive a general Markovian map in the
presence of a memoryless environment by coarse graining the exact short-time non-Markovian dynamics of an
abstract open system over the environment memory-loss time, and we give the requirements for the validity of
this map. We then introduce a model contact-active region interaction that describes carrier injection from the
contacts for a generic two-terminal ballistic nanostructure. Starting from this model interaction and using the
Markovian dynamics derived by coarse graining over the effective memory-loss time of the contacts, we derive
the formulas for the nonequilibrium steady-state distribution functions of the forward- and backward-
propagating states in the nanostructure’s active region. On the example of a double-barrier tunneling structure,
the present approach yields an I-V curve that shows all the prominent resonant features. We address the
relationship between the present approach and the Landauer-Büttiker formalism and also briefly discuss the
inclusion of scattering.
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I. INTRODUCTION

In the nanoscale, quasiballistic electronic structure under
bias, relaxation toward a steady state cannot be described by
the semiclassical Boltzmann transport equation1 because the
structure’s active region is typically smaller than the carrier
mean free path and efficient scattering no longer governs
relaxation. Rather, the nanostructure’s active region behaves
as an open quantum-mechanical system,2,3 exchanging par-
ticles with the reservoirs of charge �usually referred to as
leads or contacts�. In the absence of scattering within the
active region, the coupling of the active region to the con-
tacts is the cause of its nonunitary evolution �decoherence�
toward a nonequilibrium steady state, and the importance of
this coupling has become well recognized in quantum trans-
port studies. The description and manipulation of the
contact-induced decoherence are presently of great impor-
tance not only in quantum transport studies4–12 but also in
the theory of measurement13 and quantum information.14

The purpose of this paper is to provide a simple descrip-
tion of the nonunitary evolution of a ballistic nanostructure’s
active region due to the injection of carriers from the con-
tacts. Carrier injection from the contacts into the active re-
gion is traditionally described either by an explicit source
term, such as in the single-particle density matrix,15–20

Wigner function,2,3,21–29 and Pauli equation30,31 transport for-
malisms, or via a special self-energy term in the ubiquitous
nonequilibrium Green’s function formalism.32–37 In this
work, the problem of contact-induced decoherence is treated
using the open system formalism.38 We start with a model
interaction Hamiltonian that describes the injection of carri-
ers from the contacts and then deduce the resulting nonuni-

tary evolution of the active region’s many-body reduced sta-
tistical operator in the Markovian approximation. The
following two features distinguish this paper from other re-
cent works,39–42 in which Markovian rate equations have also
been derived for tunneling nanostructures.

�1� Derivation of the Markovian evolution is achieved by
coarse graining of the exact short-time dynamics in the pres-
ence of memoryless contacts rather than utilizing the weak
coupling and van Hove limit41,42 or the high-bias limit.39

Namely, electron-electron interaction is typically the leading
inelastic scattering mechanism in the contacts. If the con-
tacts’ energy-relaxation time � due to electron-electron scat-
tering is sufficiently short, then on the time scales coarsened
over �, the contacts appear memoryless and the evolution of
the current-limiting active region can be considered
Markovian.43,44 The approximation of a memoryless environ-
ment, as applied to nanostructures, will be discussed in detail
in Secs. III and IV.

�2� A model contact-active region interaction is intro-
duced to describe the injection of carriers through the open
boundaries and supplant the resonant-level model. Namely,
for tunneling nanostructures, such as a resonant-tunneling
diode, it is common to adopt the resonant-level model45

when trying to separate the active region from the contacts.
The active region is treated as a system with one or several
discrete resonances. However, the resonant-level model for
the active region is inapplicable away from the resonances
and cannot, for instance, capture the current increase in a
resonant-tunneling diode at high biases �larger than the val-
ley bias� that is due to the continuum states. Also, it is not a
good model for simple structures without resonances, such as
an nin diode or the channel of a metal-oxide-semiconductor
field-effect transistor �MOSFET�. So, we introduce an alter-
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native model Hamiltonian that does not assume that reso-
nances a priori exist and that works both near and far from
resonances. It captures the open boundaries and naturally
continuous spectrum of a nanostructure’s active region and
describes carrier injection in a manner conceptually similar
to the explicit source terms in the single-particle density ma-
trix or Wigner function techniques.

The paper is organized as follows. In Sec. II, we overview
the basics of the partial-trace-free formalism46 for the treat-
ment of open systems �Sec. II A� and present the main steps
in the derivation of the non-Markovian equations with
memory dressing �Sec. II B�.47 In Sec. III, we discuss how
the fast memory loss due to electron-electron scattering in
the contacts can be used to justify a Markovian approxima-
tion to the exact evolution of the active region in a small
semiconductor device or a ballistic nanostructure. In Sec.
III A, we then perform coarse graining of the exact non-
Markovian short-time dynamics of an abstract open system
�details of the derivation of the exact short-time dynamics
are given in Appendix A� over the memory-loss time of the
environment in order to obtain a Markovian map, and we
discuss the necessary conditions for this procedure to hold.
In Sec. IV, we introduce a model contact-active region inter-
action applicable to a generic two-terminal nanostructure,
which describes carrier injection from the contacts. This
model interaction does not require that the structure a priori
possesses resonances. In Sec. IV A, we formalize the re-
quirements for the current-carrying contacts to be considered
a memoryless environment. Starting from the model interac-
tion and using the Markovian dynamics derived, we then
proceed to derive the Markovian evolution and steady-state
values for the distribution functions of the forward- and
backward-propagating states in the active region of a nano-
structure, and we also give the result for the steady-state
current �IV B�. We discuss the relationship of the presented
approach to the Landauer-Büttiker formalism48–51 in Sec.
IV C. In Sec. IV D, we work out the example of a one-
dimensional double-barrier tunneling structure. The nonequi-
librium steady states obtained as a result of the Markovian
evolution at different biases produce an I-V curve that shows
all the prominent resonant features, and we compare the re-
sults to those predicted by the Landauer-Büttiker formalism.
This paper is concluded in Sec. V with a brief summary and
some final remarks on the inclusion of scattering and lifting
of the Markovian approximation.

II. FORMALISM

A. Decomposition of the Liouville space

Let us consider an open system S, coupled with the envi-
ronment E, so that the composite SE is closed. For a ballistic
nanostructure, S would represent the active region, while E
would be the contacts; more generally, if scattering due to
phonons occurs within the active region, phonons should
also be included as part of E.31 S, E, and SE are assumed to
have finite-dimensional Hilbert spaces, of dimensions dS, dE,
and dSdE, respectively. Consequently, their Liouville
spaces—the spaces of operators acting on the above Hilbert
spaces—are of dimensions dS

2, dE
2 , and dS

2dE
2 , respectively.

The total SE Hamiltonian H is generally a sum of a system
part 1E � HS, an environment part HE � 1S, and an interac-
tion part Hint. The total Hamiltonian H �acting on the SE
Hilbert space� induces the total SE Liouvillian L �acting on
the SE Liouville space� through the commutator, which gov-
erns the evolution of the SE statistical operator � according
to the Liouville equation

d�

dt
= − i�H,�� = − iL� . �1�

H and L are given in the units of frequency. The dynamics
of the open system S is described by its reduced statistical
operator �S, obtained from � by tracing out the environment
states:

�S = TrE � . �2�

In general, the dynamics of �S is not unitary. A common
approach in calculating the evolution of �S is by using pro-
jection operators38,52,53 that act on the SE Liouville space.
Typically, an environmental statistical operator �E is chosen
to induce a projection operator P by P�=�E � TrE �, where
� is any vector from the SE Liouville space. Coupled equa-
tions of motion for P� and �1− P�� are then solved, often in
the weak-coupling limit, and the reduced dynamics is ob-
tained from �S=TrE �=TrE�P��.

Most often, the projection operator utilized is induced by
the initial environmental statistical operator �E�0�.38 The rea-
son is that, in the most common approximation of initially
decoupled S and E, described by ��0�=�E�0� � �S�0�, the
projection operator induced by �E�0� will eliminate a certain
memory term occurring in the evolution of �S. However, the
result for the final dynamics must not depend on the projec-
tion operator used. In this paper, we will follow the work on
the partial-trace-free �PTF� approach of Ref. 46, which uses

the projection operator P̄ induced by the uniform environ-

ment statistical operator �̄E=dE
−1 diag�1¯1�. P̄ has a unique

property: it is the only projection operator that has an ortho-
normal eigenbasis in which it is represented by a diagonal
form. Its unit eigenspace, of dimension dS

2, is a mirror image
of the Liouville space of the open system S. Projecting onto

the unit eigenspace of P̄ is equivalent to taking the partial
trace with respect to environmental states46 because for any
element of the SE Liouville space, the following holds:

�P̄���� = dE
−1/2�TrE ����. �3�

Here, the unit eigenspace of P̄ is spanned by a basis ����,
while the Liouville space of S is spanned by ����, where the
two bases are isomorphic through the following simple rela-
tionship:

���� = dE
−1/2�

j=1

dE

�j�, j�� . �4�

�i� , j�� is a basis in the SE Liouville space, induced by the
bases �ij� and ���� in the environment and system Liouville
spaces, respectively.
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Decomposition of the SE Liouville space into the two

eigenspaces of P̄ �depicted in Fig. 1� is the essence of the
PTF approach. Every vector � from the SE Liouville space
can be written as a column �= ��1 �2�T, where �1 belongs to

the unit eigenspace of P̄ and represents �up to a multiplica-
tive constant �dE� the system’s reduced component of �, i.e.,
�S	TrE �=�dE�1. The other component, �2, belongs to

subspace 2 �the zero eigenspace of P̄�, where the correlations
between S and E reside. It is important to note that the ele-
ments of subspace 2 �blue subspace in Fig. 1� have zero trace
over environmental states.

In a similar fashion, an operator A acting on the SE Liou-
ville space has a block form with submatrices Apq, p ,q
=1,2, where A11 would be the system’s reduced component
of this operator. For instance, the block form of the SE
Liouvillian L is given by

L = 
L11 L12

L21 L22
� , �5�

where L11 is commutator generated and corresponds to an
effective system Hamiltonian HS+TrE�Hint� /dE. Off-
diagonal, nonsquare Liouvillian submatrices, L12 and L21
=L12

† , represent the S-E interaction as seen in the composite
Liouville space—when Hint vanishes, so do L12 and L21. L22

can be perceived as governing the evolution of entangled SE
states and tends to a form fixed by HS and HE when the
interaction is turned off.

B. Equations with memory dressing

Using the notation introduced above, the evolution of the
reduced statistical operator �S can be represented by

�S�t� = U11�t,0��S�0� + �dEU12�t,0��2�0� , �6�

where U11 and U12 are the submatrices of the SE evolution
operator U given by

U�t,0� = Tc exp�− i
0

t 
L11 L12

L21 L22
�dt�

= 
U11�t,0� U12�t,0�

U21�t,0� U22�t,0� � . �7�

In Ref. 47, equations of motion for U11 and U12 were derived
as

dU11

dt
= − i�L11 − L12R�U11, �8a�

dU12

dt
= − i�L11 − L12R�U12 − iL12V , �8b�

accompanied by the initial conditions U11�0,0�=1 and
U12�0,0�=0. The quantity R is the so-called memory dress-
ing, as it appears to “dress” the real physical interaction L12
and yield an effective �generally complex� interaction term,
−L12R, that accompanies the Hermitian term L11 responsible
for unitary evolution. Memory dressing describes the cumu-
lative effect of the S-E interaction, as witnessed by a qua-
dratic feedback term in its self-contained matrix Riccati54,55

equation of motion �below�. The other new quantity occur-
ring in Eqs. �8a� and �8b�, V�t ,0�, can be perceived as the
evolution operator for the states from subspace 2 and is im-
portant for the description of the influx of information from
E to S. R and V obey

dR
dt

= − iL22R − iRL12R + iRL11 + iL21, �9a�

dV
dt

= − i�L22 + RL12�V , �9b�

accompanied by R�0�=0 and V�0,0�=1.
Equations �8a�, �8b�, �9a�, and �9b� are exact.47 They are

an alternative form of the SE Liouville equation �1�. The
resulting exact evolution of the reduced statistical operator
can be expressed through the following differential equation
of motion:

d�S�t�
dt

= − i�L11 − L12R�t���S�t� − iL12
�dEV�t,0��2�0� ,

�10�

which is a partial-trace-free form of
d�S

dt =TrE�−iL��.

FIG. 1. �Color online� Decomposition of the total SE Liouville

space into the eigenspaces of the projection operator P̄ induced by
the uniform statistical operator �̄E. The unit eigenspace is equivalent
to the system Liouville space, where the equivalence is given by

isomorphism �3�. Working within the eigenspaces of P̄ removes the
need for performing the partial trace over the environmental states.

DECOHERENCE DUE TO CONTACTS IN BALLISTIC… PHYSICAL REVIEW B 77, 125301 �2008�

125301-3



If we restrict our attention to the evolution starting from
an initially uncorrelated state of the form

��0� = �E�0� � �S�0� , �11�

it is possible to completely reduce the problem to subspace 1.
Namely, it is possible to write

�2�0� = M�1�0� = dE
−1/2M�S�0� , �12�

where the mapping M is completely determined by the com-
ponents of �E�0�, the initial environment statistical operator
�see Appendix A�. Equation �12� embodies the argument
made by Lindblad56 that a subdynamics exists only for an
uncorrelated initial state because, as a consequence of Eqs.
�6� and �12�, it is possible to write

�S�t� = �U11�t,0� + U12�t,0�M�

W�t,0�

�S�0� .

�13�

So, the evolution is completely described on the Liouville
space of the open system. When Eq. �12� is substituted into
Eq. �10�, we obtain the differential form of Eq. �13� as

d�S�t�
dt

= − i�L11 − L12R�t���S�t� − iL12V�t�M�S�0� .

�14�

It is well known that a subdynamics can also be obtained for
the case of an initially decoupled SE state by simply choos-
ing the initial environmental statistical operator �E�0� as the
one to induce the projection operator P �see, for instance,
Ref. 38�. However, the result for the final dynamics must not
depend on the projection operator used, as projection opera-
tors are, after all, only auxiliary quantities. While the physics
must be the same regardless of the projection operator used,
the opacity of the equations obtained certainly varies. Equa-

tion �14� shows explicitly how the subdynamics looks for P̄;
by generalizing the proof in Appendix A, one can write the

subdynamics for any other projection operator instead of P̄.

The reason we are using P̄ instead of the projection operator
P induced by the initial environmental statistical operator is

that, as stated previously, P̄ is the only projection operator
that has an orthonormal eigenbasis in which it is represented
by a diagonal form �Eq. �4��. While any other projection
operator P still projects onto its own dS

2-dimensional image
space �see Appendix A�, P and 1− P never assume simple
diagonal forms, so, after projecting, one still needs to explic-
itly take the partial trace, which leaves the equations less
transparent.

III. DECOHERENCE IN THE PRESENCE OF A
MEMORYLESS ENVIRONMENT

The non-Markovian map W�t ,0�=U11�t ,0�+U12�t ,0�M
that defines subdynamics �13� can quite generally be written
as

W�t,0� = Tc exp�
0

t

K�t��dt�� . �15�

Here, K�t� is the generator of W�t ,0�. In general, K�t�
=−iLeff−G�t�, i.e., it contains an effective system Liouvillian
Leff and a correction G due to the system-environment inter-
action, which describes decoherence. In the case of Markov-
ian evolution, K=−iLeff−G=const, and G must have the
well-known Lindblad dissipator form57,58 in order for map
�15� to remain completely positive.38,58

In general, it is impossible to obtain W�t ,0� exactly. If
one is interested in retaining the non-Markovian nature of
Eq. �15�, typically, an expansion up to the second or fourth
order in the interaction is undertaken.38 On the other hand, a
Markovian approximation to the exact dynamics can be ob-
tained in the weak-coupling and van Hove limit, as first
shown by Davies.59 Although the weak-coupling limit has
been used previously by several authors41,42 to derive Mar-
kovian rate equations for tunneling structures in the
resonant-level model, this approximation is not generally ap-
plicable for nanostructures.41

The point we wish to make here is that the Markovian
approximation to the long-time evolution of nanostructures
can be justified more broadly by employing the approxima-
tion of a memoryless environment for the contacts. Consider
first the active region of a small semiconductor device; a
good example is the state-of-the-art MOSFET with 45 nm
lithographic gate length �physical gate length is estimated to
be around 20 nm�, found in Intel’s 2008 Penryn processors.60

Semiconductor devices are generally required to operate at
�or at least near� room temperature, where phonons are abun-
dant. However, due to the active region’s minuscule dimen-
sions, scattering happens infrequently, so the active region
does feature quasiballistic transport, where scattering can be
added as a perturbation to the ballistic solution. The bulklike
contacts of semiconductor devices are typically heavily
doped ��1019–1020 cm−3�, and at room temperature all the
dopants are ionized; at such high doping densities, electron-
electron scattering dominates over phonon scattering as the
leading energy-relaxation mechanism �e.g., relaxation time
for electron-electron scattering in bulk GaAs at 1019 cm−3

and room temperature is 10 fs,61 whereas it is about 150 fs
for polar optical phonon scattering62�. Basically, electron-
electron scattering in the highly doped contacts of semicon-
ductor devices ensures that the carrier distribution snaps into
a distribution that can be considered a displaced �also known
as drifted� Fermi-Dirac distribution63 �see also Sec. IV A�
within the energy-relaxation time ��101–102 fs �Refs. 61
and 64�; the actual value depends on the doping density and
temperature. This time is very short with respect to the typi-
cal response times of these devices, which is on the time
scales of �AR�1–10 ps �AR stands for the active region�.
Therefore, for small semiconductor devices, on time scales
coarsened over the energy-relaxation time � of the contacts,
the contact distribution function responds virtually instanta-
neously, and the contacts can be considered memoryless,
while the relaxation of the whole structure happens on time
scales a few orders of magnitude longer. �A memoryless ap-
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proximation must be applied with care to current-carrying
contacts, as we will discuss in detail in Secs. IV A and IV C.�

For low-dimensional nanostructures, fabricated on a high-
mobility two-dimensional electron gas and operating at low
temperatures, the energy relaxation in the contacts is also
governed by the inelastic electron-electron scattering65,66 be-
cause the phonons are frozen �although there are indications
that acoustic phonon scattering may be important down to
about 4 K �Ref. 67��. The near-equilibrium energy-relaxation
times in these contacts are much longer than those in de-
vices, falling in the wide range of 100–103 ps,68–71 depend-
ing on the contact dimensionality �one72–75 or two
dimensions68,69�, carrier density, and temperature. Excita-
tions with energies higher than kBT, such as when bias V
�kBT /q is applied across the nanostructure �q is the electron
charge�, relax more rapidly,69,74 which is of particular impor-
tance in the collector contact. In low-dimensional nanostruc-
tures, there are also experimental indications that coupling of
the active region to the contacts governs its evolution.76 As
for the typical response times of nanostructures, recent ex-
periment by Naser et al.77 demonstrated Markovian relax-
ation in quantum point contacts on �AR�50 ns time scales at
4 K, so the ratio � /�AR is still less than unity but not as small
as in devices.

There is enough rationale to further explore a nanostruc-
ture’s dynamics within the approximation of memoryless
contacts, with the understanding that this approximation
must generally be qualified, especially for nanostructures at
very low temperatures. We will therefore proceed with deriv-
ing the Markovian approximation to the exact non-
Markovian equation �14� in the presence of an environment
that loses memory on a time scale �, presumed much shorter
than the response time of the open system, and we will de-
rive the relationships that the coarse-graining time � must
satisfy for the approximation to be consistent. Then, in Sec.
IV, we will see what type of constraint that puts on our
energy-relaxation time in the contacts.

Before proceeding with the formal development, it is
worth stressing that the importance of a Markovian approxi-
mation to the exact evolution is great because with both
nanoscale semiconductor devices used for digital applica-
tions and with dc experiments on nanostructures, one is pri-
marily interested in the steady state that the structure reaches
upon the application of a dc bias. In these situations, it is
sufficient to employ the Markovian approximation to the
evolution �if warranted�, as it is correct on long time scales
and will result in the correct steady state.

A. Markovian evolution by coarse graining

To practically obtain the Markovian approximation due to
an environment that loses memory after a time �, we use the
coarse-graining procedure. We can partition the time axis
into intervals of length �, tn=n�, so the environment interacts
with the system in exactly the same way during each interval
�tn , tn+1�,78 so

�S,n+1 − �S,n

�
= K̄��S,n, �16�

where K̄�=
�0

�K�t��dt�

� =
�tn

tn+1K�t��dt�

� is the averaged value of the
map’s generator over any interval �tn , tn+1� �K is reset at each

tn�. If the time scales are coarsened over �, then the term on
the left of Eq. �16� approximates the first derivative at tn, so
the system’s evolution can be described by

d�S

dt
= K̄��S�t� . �17�

The above map is completely positive and Markovian
�coarse graining preserves complete positivity78� but still has
little practical value because extracting K explicitly from
first principles is difficult. However, if the coarse-graining
time � is short enough, then the short-time expansion of K
can be used to perform the coarse graining. Up to the second
order in time �details of the short-time expansion can be
found in Appendix B�,

K�t� = − iLeff − 2�t + o�t2� , �18�

where Leff= �HS+ �Hint� , . . . �=LS+ ��Hint� , . . . � is an effec-
tive system Liouvillian, containing the noninteracting-system
Liouvillian LS and a correction due to the interaction ��¯�
=TrE��E�0�¯ � denotes the partial average with respect to
the initial environmental state �E�0��. The matrix elements of
superoperator �, in a basis �� in the system’s Liouville
space �Liouville space is basically a tensor square of the
Hilbert space�, are determined from the matrix elements of
the interaction Hamiltonian:

�����
�� =

1

2��Hint
2 ���

� 	�
�� + �Hint

2 ���
��	��

�

− 2�
j,j�

�Hint� j��
j��

�E
j �Hint� j��

j�� − ��Hint�2���
� 	�

��

+ 2�Hint���
� �Hint��

�� − ��Hint�2��
��	��

� � , �19�

where �E
j are the eigenvalues of the initial environment sta-

tistical operator �E�0�. � has been implicitly defined
previously79 in the interaction picture and with the assump-
tion of �Hint�=0. Here, we work in the Schrödinger picture
and generally need to retain �Hint��0, which is important
for the inclusion of carrier-carrier interaction in nanostruc-
tures. � contains essential information on the directions of
coherence loss.

If the coarse-graining time � is short enough that it holds

���� 
 �Leff� , �20�

then the short-time expansion of K can be used for coarse
graining, and we obtain

K̄� = − iLeff − �� , �21�

leading to the Markovian equation

d�S�t�
dt

= �− iLeff − ����S�t� , �22�

which is the central equation of this paper. For the Markov-
ian approximation to be consistent,38 the system’s relaxation
�occurring on time scales no shorter than 1 / �� ��� must be
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much slower than the environment’s relaxation �occurring
over ��; therefore, we must have

����2 
 1. �23�

Conditions �20� and �23� can be compactly written as

����2 
 min�1,�Leff��� . �24�

B. Some general considerations regarding the use
of Eq. (22)

Before we proceed to treating a concrete nanostructure as
an example, there are several general features regarding the
use of Eq. �22� that can be applied more broadly than in the
treatment of nanostructures. �The reader interested exclu-
sively in decoherence in nanostructures can skip the rest of
this section and go directly to Sec. IV.�

1. Decoherence-free evolution in the zero eigenspace of �

Let us assume for a moment that Leff and � commute �we
will see two cases of this situation in Appendix C�. If so, the
components of �S belonging to the null space of � will not
decohere—they will continue to evolve unitarily, as the null
space of � will be invariant under Leff. Components of �S
corresponding to the nonzero eigenvalues of � will decohere
until they drop to zero. So, in the case of commuting Leff and
�, the null space of � is decoherence-free. For noncommut-
ing Leff and �, this statement can be generalized as follows.

Theorem 1. If a subspace of N���, the null space of op-
erator �, is also an invariant subspace of Leff, then it sup-
ports decoherence-free �unitary� evolution according to map
�22�.

Proof. Let N���� be a subspace of N���. If N���� is an
invariant subspace of Leff, then it is an invariant subspace of
the full generator of the Markovian semigroup �22� and, con-
sequently, an invariant subspace of the semigroup. A statis-
tical operator �0, initially prepared in N����, would remain
in N���� at all times and evolve unitarily according to d�0

dt
=−iLeff

0 �0�t�, where Leff
0 is the reduced form of Leff onto

N����. �

This theorem is equivalent to the statements made in the
original works on decoherence-free subspaces,80 where a
decoherence-free statistical operator was defined through an-
nulment by the Lindblad dissipator. Note, however, that here
we identify the decoherence-free subspaces in the system
Liouville space rather than in its Hilbert space. This allows
for the possibility that some entangled system states �Tr �S

2

�Tr �S� could be resilient against decoherence, which is a
potentially useful feature that cannot be captured in the Hil-
bert space alone.

Theorem 1 gives us a straightforward, general recipe for
the classification of the decoherence-free subspaces in the
case of Markovian dynamics �22�. What one needs to do is to
construct the operator � according to Eq. �19� from the mi-
croscopic interaction Hamiltonian and the environmental
preparation, solve its eigenproblem �in general numerically�,
and investigate whether any of its null spaces is invariant
under Leff. This is a simple, efficient way to approximately

determine where the information should be stored and should
work well as long as the system is small enough to allow for
a full solution to the eigenproblem of �.

Moreover, the structure of the eigenspaces of � enables
us to determine the directions of decoherence. For instance,
regardless of the value of �, we can still tell which states do
and which do not decohere and calculate the relative values
of the decoherence rates for two given states. For fast switch-
ing in nanoscale semiconductor devices, for example, we
need rapid coherence loss between the active region and
leads, and we may therefore opt to prepare the system in the
subspace of � corresponding to one of its largest eigenval-
ues.

2. Identification of the steady state

An important special case of a decoherence-free subspace
is the intersection of N�Leff� and N���.

Theorem 2. A statistical operator belonging to
N�Leff��N���, the intersection of the null spaces N�Leff�
and N���, is a steady state for the evolution according to
map �22�.

Proof. N�Leff��N��� is the null space of the Markovian
semigroup generator. Consequently, any statistical operator
prepared in N�Leff��N��� remains unchanged at all times,
satisfying the definition of a steady state. �

By looking into the common null subspace of Leff and �,
one can narrow down the set of potential steady states, which
is important in many-body transport calculations. In the case
of a many-particle open system, a full solution to the eigen-
problem of � may not be tractable; however, identification of
the common null space of Leff and � may be.

3. A comment on the validity of Eq. (22)

In general, whenever an efficient resetting mechanism can
be defined for the environment, so that Eq. �24� is satisfied,
Eq. �22� should be applicable. However, it also appears that
the simple equation �22� may be used more broadly than
specified by Eq. �24�. Namely, on one of the few exactly
solvable systems, the spin-boson model with pure dephasing,
which experiences Markovian evolution in the long-time
limit regardless of the coupling strength, it can be shown �see
Appendix C 1� that one can define a mathematical coarse-
graining time � that is shorter than any other time scale in the
coupled system and environment, so that coarse-grained evo-
lution over � �Eq. �22�� and the exact Markovian evolution
coincide. So, it appears that not only does coarse graining
result in Markovian maps, but the converse might also be
true. It is possible that a given Markovian evolution can be
obtained by coarse graining of the short-time dynamics if a
suitable �ultrashort� mathematical coarse-graining time is
chosen. This statement would, of course, be very difficult to
prove in general terms but is interesting because it would
mean that all one needs to deduce the steady state for the
evolution of an open system is the information on its short-
time dynamics �Eq. �18��, which can in principle be done
relatively straightforwardly and from first principles �the mi-
croscopic interaction and the preparation of the environ-
ment�. Indeed, on an additional example of the Jaynes-
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Cummings Hamiltonian in the rotating wave approximation,
which has been worked out in Appendix C 2, it has been
shown that by using map �22� and the resulting criterion for
the steady state �Theorem 2�, relaxation toward the proper
equilibrium state has been obtained. So it appears that the
applicability of Eq. �22� may extend beyond the formal range
of its validity �Eq. �24��.

IV. A TWO-TERMINAL BALLISTIC NANOSTRUCTURE

In this section, we consider a generic two-terminal nano-
structure under bias and introduce a model interaction be-
tween the ballistic active region and the contacts. This model
should hold regardless of whether the structure has reso-
nances or not, as it is constructed to mimic the source term in
the single-particle density matrix15–20 and Wigner
function2,3,21–29 formalisms and preserve the continuity of
current, state by state. In Sec. IV D, the results are illustrated
on a one-dimensional two-barrier tunneling structure.

The left contact is the injector �source�, biased negatively,
while the right contact is the collector �drain�. The contact-
active region boundaries are at xL �left� and xR �right�, with
W=xR−xL being the active region width. We will assume
that the active region includes a large enough portion of the
contacts �i.e., exceeding several Debye lengths� so that there
is no doubt about the flatband condition in the contacts. Also,
W should be large enough to reasonably ensure a quasicon-
tinuum of wave vectors ��k=2� /W� following the periodic
boundary conditions. While sweeping the negative bias on
the injector contact, we will assume that it is done slowly �so
that between two bias points the system is allowed to relax�
and in small increments �so that the potential profile inside
the active region does not change much between two bias
points and can be regarded constant during each transient�.

For every energy Ek above the bottom of the left contact,
the active region’s single-particle Hamiltonian has two
eigenfunctions, a forward �k� and a backward �−k� propa-
gating state, that can be found by �in general numerically�
solving the single-particle Schrödinger equation for a given
potential profile in the active region. To keep the discussion
as general as possible, we will not specify the details of how
the active region actually looks �Fig. 2�—e.g., it can be a
heterostructure, a pn homojunction, or a MOSFET channel—
but we will require that the contact-active region open
boundaries �at xL and xR� are far enough from any junctions
in the active region, so that the behavior of �k near the
boundaries is already plane-wave-like, i.e., that their general

form near the injector is k�xL
+�=eikxL

+
+r−k,Le−ikxL

+
, −k�xL

+�
= t−k,Le−ikxL

+
, while near the collector it is k�xR

−�= tk�,Reik�xR
−
,

−k�xR
−�=e−ik�xR

−
+rk�,Reik�xR

−
. Here, t and r are the transmis-

sion and reflection amplitudes, while k and k� are the wave
vectors that correspond to the same energy Ek, measured with
respect to the conduction band bottoms in the left and right
contacts, respectively �k2=k�2−2mqV /�2=2mEk /�2, where
−V has been applied to the left contact, and q is the electron
charge�.

Associated with k �−k� in the active region are the
creation and destruction operators dk

† and dk �d−k
† and d−k�, so

the active region many-body Hamiltonian is

HS = �
k�0

�k�dk
†dk + d−k

† d−k� . �25�

Spin is disregarded, and �k=Ek /�. In the case of ballistic
injection through the open boundaries, each state k is natu-
rally coupled with the states exp��ikx� in the left contact
�injected and reflected wave� and the state exp�ik�x� in the
right contact �transmitted wave�. For −k, the coupling is
between exp��ik�x� in the right and exp�−ikx� in the left
contact. To model the coupling between k and the contacts
via a hopping-type interaction, we can write quite generally
�see Fig. 2�

Hint
+ = �

k�0
��kdk

†ck,L + �k
rc−k,L

† dk + �k
t ck�,R

† dk� + H.c. �26�

c�k,L
† �c�k,L� and ck�,R

† �ck�,R� create �destroy� an electron with
a wave vector �k in the left and k� in the right contact,
respectively. The hopping coefficients �k, �k

r, and �k
t are the

rates of injection, reflection, and transmission, respectively.
Therefore, they are proportional to the injected, reflected,
and transmitted currents for the state k, i.e.,

�k
r

�k
= Rk,

�k
t

�k
= Tk, �27�

where Rk and Tk are the reflection and transmission coeffi-
cients at a given energy. The actual magnitude of �k can be
determined by requiring that �k

t =Tk�k, the hopping rate from
the active region into the right contact, be the same as the
current �per unit charge� carried through the active region by
k. This just means that there is no more reflection once the
wave exits the active region and gets into the outgoing con-
tact, and is usually referred to as the assumption of reflec-
tionless leads.81 The current carried by k is given by the
well-known quantum-mechanical relationship

qVqVqVqV

active regionactive regionactive regionactive regionleft contactleft contactleft contactleft contact right contactright contactright contactright contact

WWWW

ikxikxikxikx

kkkkeeee

xxxxLLLL xxxxRRRR

rrrr ����

����

ikxikxikxikxeeee
kkkkkkk�������

�������
������� kkkkkkkLLLLLLLkkkkkkkkkkkkkk dddddddccccccc ,,,,,,,,

kkkkkkkLLLLLLLkkkkkkk

rrrrrrr

kkkkkkk dddddddccccccc�������

�������
������� ,,,,,,,,

kkkkkkk�������
xxxxikikikik

kkkk eeeetttt ''''

''''

�������
������� RRRRRRRkkkkkkkkkkkkkk

ttttttt

kkkkkkk cccccccddddddd ,,,,,,,,''''''''

EEEEFFFF

FIG. 2. �Color online� Schematic of the coupling between the
active region of a generic two-terminal nanostructure and the con-
tacts. In the case of ballistic injection through the open boundaries,
a forward-propagating state k is coupled with the states exp��ikx�
in the left contact �injected and reflected wave� and the state
exp�ik�x� in the right contact �transmitted wave� via a hopping
model interaction �Eq. �26��.
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Ik =
q�

m�k�2 Im�
k
* � k� =

q�

m

�tk�,R�2k�

�k�2 =
q�k

m

Tk

�k�2 ,

�28�

where we have used the form of k near the right contact
tk�,Reik�x, and �k�2=�0

W�k�x��2dx is the norm squared of k

over the active region of width W. Since we require that
Ik /q=�k

t =Tk�k, we find

�k =
�k

m�k�2 . �29�

Finally,

Hint
+ = �

k�0
�k�dk

†ck,L + Rkc−k,L
† dk + Tkck�,R

† dk� + H.c.,

�30�

while the Hamiltonian for the backward-propagating states
can be written in an analogous fashion as

Hint
− = �

k�0
�−k�d−k

† c−k�,R + R−kck�,R
† d−k + T−kc−k,L

† d−k� + H.c.,

�31�

with �−k= �k�
m�−k�2 , and Tk=T−k, Rk=R−k.

When we put it all together, we have the following for the
interaction Hamiltonians of the active region with the left
and right contacts:

Hint
L = �

k�0
�k��ck,L

† + Rkc−k,L
† �dk + dk

†�ck,L + Rkc−k,L��

+ �−k�Tkc−k,L
† d−k + Tkd−k

† c−k,L� , �32a�

Hint
R = �

k�0
�−k��c−k�,R

† + Rkck�,R
† �d−k + d−k

† �c−k�,R + Rkck�,R��

+ �k�Tkck�,R
† dk + Tkdk

†ck�,R� . �32b�

A. Current-carrying contacts and the approximation of a
memoryless environment

Now that we have the interaction Hamiltonians in place,
we should evaluate the matrix elements of the superoperator
�, which leads us to the questions how the approximation of
a memoryless environment is actually applied to contacts
carrying current and how the expectation values of the inter-
action Hamiltonian are to be calculated.

In general, as the current flows through the structure, we
must allow for different distributions of the forward- and
backward-propagating waves in the left and right contacts to
ensure current continuity. A simple and often employed ap-
proximation for the steady-state distribution in the contacts
carrying current I is a single-parameter drifted �or displaced�
Fermi-Dirac distribution, given here for the left contact:30,31

f�k
L = �n�k,L� =

1

exp��2���k − kd�2 − kF
2�

2mkBT
� + 1

. �33�

Here, kF is the Fermi wave vector and kd is the drift wave
vector, determined from the total current I as kd=mI /n1Dq�,
where n1D is the one-dimensional carrier density in each con-
tact �contacts are assumed identical�. A drifted Fermi-Dirac
distribution, with the temperature equal to that of the lattice,
is often employed when we are interested in just the first two
moments of the distribution function �i.e., maintaining
charge neutrality and ensuring current continuity�. Addition-
ally, if needed, information on the electron heating can be
incorporated in this distribution by allowing for a discrep-
ancy between the electronic and lattice temperatures �we will
neglect electron heating here�. Detailed ensemble Monte
Carlo — molecular dynamics simulations of carrier transport
in highly doped ��1017 cm3� bulk semiconductors, in which
electron-electron scattering is the most efficient energy-
relaxation mechanism, have shown to produce distributions
very close to the drifted Fermi-Dirac distribution �33�,61,63,82

which is generally accepted as a decent approximation for
these systems. Here, we will also adopt Eq. �33� for the
distribution of carriers in the current-carrying contacts, and it
is reasonable if the �one-dimensional� contacts are longer
than �D�, where D is the diffusion constant �otherwise, the
distribution function in them may not be thermalized83,84�.

Now, the question arises what happens if we try to sweep
the voltage. We have mentioned before that the voltage is to
be swept slowly �enough time between two bias points for
the system to relax� and in small increments �so that we can
consider the barrier as having a constant profile during each
transient�. The latter is crucial for the implementation of the
approximation of a memoryless environment. Suppose that,
at a bias V, a steady-state current I is flowing through the
structure. If we increase the bias by �V at t=0, where �V is
very small, within the first t=� the current is virtually
unchanged—it takes the current a much longer time �AR��
to change significantly �AR stands for active region; once we
have had a chance to complete the calculation, we will see
that �AR will be equal to 1 /��, where � is a relevant eigen-
value of ��. Therefore, after �, the contact carriers have re-
distributed themselves to the old distribution function that
they had at V. Basically, the contact carriers redistribute
themselves according to the �virtually� instantaneous current
level at each �, while the current changes very little during
each �. By the time the current has saturated ���AR�, the
contact carriers have had a chance to get redistributed many
times; however, if the total voltage increase �V is very
small, the total current increase during the full transient will
also be small, so we can say that during the whole transient,
the distribution functions of the forward- �backward-� propa-
gating states have been resetting to nearly the same distribu-
tion, approximately the average of distributions �33� over the
interval �V ,V+�V�. Clearly, as the voltage sweep increment
�V→0, we can say that during a transient, the contacts re-
distribute to f�k

L,R �Eq. �33�� at V.
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Evaluation of kd that enters the contact distribution func-
tions at a given voltage must be done self-consistently. Start-
ing with a guess for kd at a given voltage, steady-state dis-
tributions and current are evaluated �as detailed in the next
section�. The obtained current is then used to recalculate kd,
and the process is repeated until a satisfactory level of con-
vergence is achieved. �Of course, the initial guess for kd at
any voltage can be kd=0, but for faster convergence, it is
better to start with the kd found for the preceding voltage.�

B. Markovian relaxation for a two-terminal nanostructure.
Steady-state distributions and current

Since the interaction Hamiltonians �32a� and �32b� are
linear in the contact creation and destruction operators, and
we can approximate that each contact snaps back to a
“drifted” grand-canonical statistical operator, we have
�Hint

L/R�=0. This means that LS=Leff and also leaves us with
only the first three terms in Eq. �19� for � to calculate. One
can show that �=�L+�R, where

��L/R���,��
�,� =

1

2
���Hint

L/R�2���
� 	�

�� + ��Hint
L/R�2��

��	��
� �

− �
i,j

�L,R
i �Hint

L/R�i��
j� �Hint

L/R� j�
i��. �34�

The first and the second term in Eq. �34� give a general
contribution of the form ���

��, since

��Hint
L �2� = �

k�0
�k

2���nk,L� + Rk
2�n−k,L��dkdk

†

+ ��1 − �nk,L�� + Rk
2�1 − �n−k,L���dk

†dk�

+ �−k
2 �Tk

2�n−k,L�d−kd−k
† + Tk

2�1 − �n−k,L��d−k
† d−k�

= �
k�0

�k
2��fk

L + Rk
2f−k

L �dkdk
†

+ ��1 − fk
L� + Rk

2�1 − f−k
L ��dk

†dk�

+ �−k
2 �Tk

2f−k
L d−kd−k

† + Tk
2�1 − f−k

L �d−k
† d−k� �35�

preserves the filling of states. We have used �n�k,L�= f�k
L ,

where f�k
L is the drifted Fermi-Dirac distribution function in

the left contact �Eq. �33��.
In contrast, the third term in Eq. �34�:

�
i,j

�L
i �Hint

L �i��
j� �Hint

L � j�
i�� = �

k�0
�k

2���1 − fk
L� + Rk

2�1 − f−k
L ��

��dk���
� �dk

†��
��

+ �fk
L + Rk

2f−k
L ��dk

†���
� �dk��

���

+ �−k
2 �Tk

2�1 − f−k
L ��d−k���

� �d−k
† ��

��

+ Tk
2f−k

L �d−k
† ���

� �d−k��
��� , �36�

gives a contribution of the form ���
��.

Each term in � is a sum of independent contributions
over individual modes ��=�k�k� that attack only single-
particle states with a given k. The same holds for LS. Con-

sequently, in reality, we have a multitude of two-level prob-
lems �see Appendixes C 1 and C 2�, one for each state k,
where the two levels are a particle being in k �“�”� and a
particle being absent from k �“�”�. Each such two-level
problem is cast on its own four-dimensional Liouville space,
with �k= ��k

++ ,�k
+− ,�k

−+ ,�k
−−�T being the reduced statistical op-

erator that describes the occupation of k. According to Eq.
�22�,

d�k

dt
= �− iLS,k − �k���k, �37�

where

LS,k = �
0 0 0 0

0 2�k 0 0

0 0 − 2�k 0

0 0 0 0
� , �38a�

�k = �
Ak 0 0 − Bk

0 Ck 0 0

0 0 Ck 0

− Ak 0 0 Bk

� , �38b�

and Ak=�k
2��1− fk

L�+Rk
2�1− f−k

L �+Tk
2�1− fk�

R ��, Bk=�k
2�fk

L

+Rk
2f−k

L +Tk
2fk�

R �, and Ck= �Ak+Bk� /2=�k
2�1+Rk

2+Tk
2� /2. The

rows and columns are ordered as 1= �+ ��+�, 2= �+ ��−�,
3= �−��+�, 4= �−��−�. The diagonal elements in �k originate
from the terms of the form ���

��, calculated using Eq. �35�,
while the off-diagonal ones originate from ���

�� �Eq. �36��.
Strictly speaking, the time evolution above is valid if Eq.
�24� is satisfied, which in this case implies ��k

2 �2


min�1,�k��. After approximating �k�2�W, we obtain the
condition �v� /W�2
min�1,�k��, where v=�k /m. For typi-
cal values of W=100 nm, v�vF=105 m /s, and m
=0.067m0 appropriate for GaAs, both equations will be sat-
isfied for �
1 ps.

Clearly, off-diagonal elements �k
+− and �k

−+ decay as
exp��i2�k−�Ck�t and are zero in the steady state. The two
equations for �k

++= fk�t� and �k
−−=1− fk�t� are actually one

and the same, and either one yields

dfk�t�
dt

= − �Akfk�t� + �Bk�1 − fk�t�� = − ��Ak + Bk�fk�t� + �Bk,

�39�

where fk is the distribution function for the active region. In
the steady state, we have fk

�=
Bk

Ak+Bk
�for −k by analogy�, so

finally,

fk
� =

fk
L + Rk

2f−k
L + Tk

2fk�
R

1 + Rk
2 + Tk

22 , �40a�

f−k
� =

f−k�
R + Rk

2fk�
R + Tk

2f−k
L

1 + Rk
2 + Tk

2 . �40b�
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Note that there is no dependence of the steady-state dis-
tributions on �k, the hopping interaction strength, or the
coarse-graining time �. f�k

� obviously differ from the contact
distributions �see discussion in the next section�. The discon-
tinuity of the distribution functions across each open bound-
ary is a price to pay to conserve the flux across it, the same
as in the heuristic treatment of carrier injection in the density
matrix, Wigner function, and Pauli equation formalisms �see
the discussion on p. 4907 of Ref. 31�.

The steady-state current �per spin orientation� can be cal-
culated as

I� = �
k�0

fk
�Ik + f−k

� I−k, �41�

where Ik=q�kTk /m�k�2 and I−k=−q�k�Tk /m�−k�2 �Eq.
�28��. I�k are each constant across the active region . The
total current carried by the forward-propagating states �per
spin orientation� is

I+
� =

q�

m
�
k�0

fk
�

kTk

�k�2

=
q�

m

W

2�


0

�

kdkfk
�

Tk

�k�2

=
qW

h


0

�

dEkfk
�

Tk

�k�2 , �42a�

where we have used kdk=mdEk /�2 and �k�W /2�. Simi-
larly, the current component �per spin� carried by the
backward-propagating states is

I−
� = −

qW

h


0

�

dEkf−k
�

Tk

�−k�2 , �42b�

so the total current �per spin orientation� can be found as

I� =
qW

h


0

�

dEk� fk
�

�k�2 −
f−k

�

�−k�2�Tk. �43�

This expression is parameter-free because ��k�2 in the de-
nominator scale with W.

C. Relationship to the Landauer-Büttiker formalism

A natural question emerging at this point is how current
�43� relates to that predicted by the Landauer-Büttiker �LB�
formalism48–51 �comprehensive reviews of the LB formalism
can be found, for instance, in Refs. 85 and 86, as well as in
many textbooks81,87�. The one-channel variant of the current
formula is referred to as the Landauer formula,

ILan
� =

q

h


0

�

dEk� f̄ L�Ek� − f̄R�Ek��Tk, �44�

where f̄ L�Ek� and f̄R�Ek� are the equilibrium distributions in
the left and right contacts.86 Generalization to multiple chan-
nels is due to Büttiker.50,51,88,89

Both the LB approach and the approach presented here
focus on maintaining the carrier flux through the open

boundaries between the active region and the contacts. There
is one major difference, however. In the LB approach, what
is known are the distributions of the states entering the active
region �in our notation, fk

L and f−k�
R �; nothing is specified

about the distributions of the states going out of the structure
�f−k

L and fk�
R �, as they can be calculated by using the transfer

matrix �a nice exposition of this issue can be found in Refs.
90 and 86�. In contrast, in the approach presented here, we
need the information on both the incoming �fk

L and f−k�
R � and

the outgoing states �f−k
L and fk�

R � in the contacts in order to
calculate the distributions of the forward- and backward-
propagating states �fk

� and f−k
� � in the active region. The rea-

son is that the information about the outgoing distributions,
supplied by the transfer matrix, is destroyed in the contacts,
where the inelastic scattering very rapidly redistributes car-
riers.

Our model for the inelastic current-carrying contacts can
actually be considered as complementary to the well-known
model of voltage probes.88,91–93 On the average, a voltage
probe carries no current. Due to inelastic scattering, the dis-
tribution function in a voltage probe is reset to the equilib-
rium one on time scales much shorter than the response time
limited by the active region ��AR�. In contrast, there is no
voltage drop over a current-carrying contact �the conduction
band bottom is flat�, while the average current carried by it is
generally nonzero. Due to inelastic electron-electron scatter-
ing, the distribution function in the current-carrying contact
is reset to a displaced Fermi-Dirac distribution on time scales
much shorter than �AR.

D. Example: A double-barrier tunneling structure

We illustrate the results of Sec. IV B on a one-
dimensional, double-barrier tunneling structure formed on a
quantum wire in which only one subband is populated. The
Fermi level is at 5 meV with respect to the subband bottom.
The well width is 15 nm, the barrier thickness is 25 nm, and
the barrier height is 15 meV. These result in one bound state
at about 6.84 meV when no bias is applied. The goal is to
calculate the nonequilibrium steady-state distribution func-
tions specified by Eqs. �40a� and �40b� under any given bias
V and to use this information to construct the I-V curve. For
simplicity, in this calculation, the voltage is assumed to drop
linearly across the well and barriers, but in general, Eqs.
�40a� and �40b� need to be coupled with a Poisson and a
Schrödinger solver to obtain a realistic potential profile and
charge distribution.

Figure 3 shows the I-V curve of the double-barrier tunnel-
ing structure, as calculated according to expression �43� and
the Landauer formula �44�. In the voltage range depicted, the
current flowing through the structure is so low that the equi-

librium distribution functions in the contacts � f̄ L�Ek� and

f̄R�Ek�� and the drifted Fermi-Dirac distributions �33�, with kd

determined self-consistently, are extremely close to one an-
other and give almost identical f�k

� �Eqs. �40a� and �40b��
and the values for current �43�. The difference between the
curves obtained by using the equilibrium contact distribu-
tions and the drifted Fermi-Dirac is barely visible within the

I. KNEZEVIC PHYSICAL REVIEW B 77, 125301 �2008�

125301-10



voltage range presented �the maximal difference between the
currents obtained in these two ways is �10−11 A�.

Both Eqs. �43� and �44� describe ballistic transport, so no
crossing of the curves typical for the inclusion of inelastic
scattering should be expected �inelastic scattering causes the
peak to lower and the valley to rise, so the curves cross28�.
Both curves in Fig. 3 properly display the resonant features,
but the Landauer formula �44� predicts a higher peak current
than Eq. �43�. The reason is that f�k

� , used in Eq. �43�, coin-
cide with the contact �nearly equilibrium� distribution func-
tions only if the transmission is not high. Near a transmission
peak, significant deviations of f�k

� �Eqs. �40a� and �40b��
from the contact distribution functions occur, as shown in
Fig. 4 for the peak voltage from Fig. 3, and lead to the
lowering of the current observed in Fig. 3.

V. SUMMARY AND CONCLUDING REMARKS

In this paper, a simple theoretical description of the
contact-induced decoherence in two-terminal nanostructures
was provided within the framework of the open system
theory. The model active region–contact interaction was in-
troduced to ensure proper carrier injection from the contacts.

The steady-state statistical operator of the active region was
calculated by relying on the Markovian map derived through
coarse graining of the exact short-time dynamics over the
energy-relaxation time of the bulklike contacts. The ballistic-
limit, steady-state distribution functions of the forward- and
backward-propagating states for a generic two-terminal
nanostructure have been derived. The approach was illus-
trated on the example of a double-barrier tunneling structure,
where an I-V curve that shows all the prominent resonant
features was obtained. The relationship between the present
approach and the Landauer-Büttiker formalism was ad-
dressed.

The inclusion of scattering within the active region would
alter the form of Leff, while scattering between the active
region and the contacts would essentially alter �. Equations
�40a� and �40b� are the ballistic limit of the active region’s
nonequilibrium steady-state distributions, and are a better
starting point for transport calculations with scattering than
the equilibrium distributions. For instance, the single-particle
density matrix ��1��k1 ,k2�=TrS�dk2

† dk1
�S� in the ballistic limit

is obviously diagonal, so to include scattering within the ac-
tive region, one simple way would be to follow the single-
particle density matrix formalism,15–20 with the diagonal
��1��k ,k� specified by Eqs. �40a� and �40b� as the ballistic
limit. �Clearly, ��1� would no longer be diagonal in k once
scattering is included.� Scattering due to phonons within the
active region is generally amenable to a weak-coupling ap-
proximation, so it can be treated as a perturbation within the
Born approximation. To treat phonon-assisted injection from
the contacts, the contact many-body Hilbert space can be
augmented to formally include a tensor product of the con-
tact and the phonon Hilbert spaces,30,31 but again a simpler
perturbative treatment may be enough. As for the treatment
of electron-electron scattering, � is in the form that allows
for its inclusion between the active region and the contacts,
but this is likely to be a difficult technical issue.

Finally, an important feature of the present approach is
that it can be, at least in principle, extended to arbitrarily
short time scales by forgoing the coarse-graining procedure,
so non-Markovian effects can be observed. However, since
the coarse-graining procedure phenomenologically accounts
for the efficient electron-electron interaction in the contacts,
without it, we would be required to explicitly include this
interaction in the contact Hamiltonian, which will require
certain modifications to the present approach.
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APPENDIX A: UNCORRELATED INITIAL STATE AND
THE EXISTENCE OF A SUBDYNAMICS

In this appendix, for an uncorrelated initial state of the
form ��0�=�E � �S�0�, we will explicitly show that �2�0�, the

component of ��0� belonging to the zero eigenspace of P̄,
can be written in terms of �S�0� via Eq. �12�, repeated here:
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FIG. 3. �Color online� I-V curve for the double-barrier tunneling
structure according to expression �43� �solid curve� and the Land-
auer formula �44� �dashed curve� at 1 K.
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FIG. 4. Steady-state distribution functions �Eqs. �40a� and
�40b�� of the forward �fk
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� � propagating states at

the peak voltage �5 meV� from Fig. 3 and 1 K. Energy is measured
with respect to the bottom of the injector contact �Fig. 2�. Signifi-
cant deviations from the Fermi-Dirac equilibrium distributions in
the contacts coincide with the peak in transmission.
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�2�0� = M�1�0� = dE
−1/2M�S�0� . �A1�

Together with Eq. �6�, this equation proves that a subdynam-
ics exists. We will explicitly derive the mapping M that is
uniquely fixed by �E.

1. Eigenbasis of P̄

Let us first remind ourselves of the structure of the eigens-

paces of P̄. Its unit eigenspace is dS
2 dimensional, spanned by

vectors of the form

���� = dE
−1/2�

i=1

dE

�i�,i�� . �A2�

This form holds regardless of the environmental basis cho-
sen, which is in agreement with the fact that the uniform

environmental statistical operator �̄E �the one that induces P̄�
is a scalar matrix, i.e., diagonal in any environmental basis.

In the zero eigenspace of P̄, for any choice of the environ-
mental basis, we can identify two subspaces:

�1� A subspace spanned by vectors of the form �i� , j��,
with i� j. This subspace is dS

2dE�dE−1� dimensional.
�2� A subspace spanned by linear combinations of �i� , i��,

which are orthogonal to all ����. These are given by

�bi,��� =�dE + 1 − i

dE − i
��i�,i�� −

�
j=i

dE

�j�, j��

dE + 1 − i
� �A3�

for every pair �, � and for i=1, . . . ,dE−1. This subspace is
dS

2�dE−1� dimensional. Note how the coefficients in the lin-
ear combinations do not depend on �, �.

2. Range (image space) of P and null space of P†

Now, let us get back to the initially uncorrelated state of
the form ��0�=�E � �S�0� and choose the eigenbasis of �E as
the environmental basis �j�, j=1, . . .dE. �E, the initial envi-
ronmental statistical operator from ��0�=�E � �S�0�, induces
its own projection operator P, so that for any vector � from
the SE Liouville space, we can write

P� = �E � �TrE �� = �
i,��,��

�E
i ��

k

�k��,k����i�,i�� .

�A4�

The Latin indices i, k=1, . . .dE count environmental states,
while the Greek ones �, �=1, . . .dS count the system states.
The essence of the following proof is to write any P� in

terms of the eigenvectors of P̄, and then, since P��0�=��0�,
draw important conclusions about its components �2�0� and
�S�0�.

P is not Hermitian or diagonalizable. We can, however,
still speak of its range �space of images� R�P�, to which ��0�
belongs because P��0�=��0�. The orthocomplement to R�P�
is N�P†�, the null space of the adjoint operator P†. It is easily
noted that all vectors of the form �i� , j��, with i� j, are in

the null spaces of P̄, P, and P†. Therefore, N�P†� is at least
dS

2dE�dE−1� dimensional. Where is the rest of N�P†�, i.e.,
what is a general form of a vector

�cq,��� = �
i=1

dE

�q
i �i�,i�� �∀���cq,���P�� = 0? �A5�

�cq,���P�� = �
i,j=1

dE

��q
i �*�E

j �i�,i��j��, j����TrE ������

= �TrE �������
i=1

dE

��i�*�E
j . �A6�

Therefore,

�cq,���P�� = 0 ⇔ �
i=1

dE

��q
i �*�E

i = 0. �A7�

Columns ��q
1 , . . . ,�q

dE�T satisfying Eq. �A7� constitute a dE

−1-dimensional space, so we conclude that N�P†� is of di-
mension dS

2dE�dE−1�+dS
2�dE−1�=dS

2�dE
2 −1�. Therefore, the

rank of P �dimension of R�P�� is dS
2, so it is isomorphic to

the unit eigenspace of P̄ and to the system Liouville space.
One can show that the choice

���˜� =
1

�Tr �E
2 �

i=1

dE

�E
i �i�,i�� �A8�

indeed constitutes an orthonormal basis in R�P�, and that

���˜�P�� = 0 iff TrE � = 0, �A9a�

���˜�cq,����� = 0, ∀ �,�,q,����. �A9b�

Why was this analysis necessary? Because an uncorre-
lated initial state satisfies P��0�=��0�, which means that the
initial statistical operator belongs completely to R�P�.
Therefore, it can be written in terms of the basis ���˜� as

���˜���0�� = TrE���0�����Tr �E
2 = �S�0����Tr �E

2 .

�A10�

In Fig. 5, mutual relationships among the eigenspaces of P̄
and the null and image subspaces of P are depicted. We
obtain

������0�� = ������˜����˜���0�� + �
q

����cq,����cq,�����0��

=0

= ������˜�

1
�dE Tr �E

2

���˜���0��

�S�0����Tr �E
2

.

�A11�

The important point to note is that ��� ���0�� and
��� ���0�� are equivalent up to the multiplicative constant

��� ���˜�= 1
�dE Tr �E

2 .

I. KNEZEVIC PHYSICAL REVIEW B 77, 125301 �2008�

125301-12



We can now obtain the projection of �2�0� onto the zero

eigenspace of P̄ as

�bj,�����0�� = �bj,�����˜����˜���0��

+ �
q

�bj���cq,����cq,�����0��

=0

=
�bj,�����˜�

������˜�
������0�� .

�A12�

Since �bi,�� ���˜�=� dE+1−i

�dE−i�Tr �E
2 ��E

i − 1
dE+1−i� j=i

dE �E
j � and

��� ���˜�= 1
�dE Tr �E

2 , we arrive at

�bi,�����0�� = Mi������0�� ,

Mi =�dE�dE + 1 − i�
dE − i

��E
i −

1

dE + 1 − i
�
j=i

dE

�E
j � .

The equations above fix the mapping �2�0�=M�1�0�
from Eq. �A1� and explicitly embody Lindblad’s argument
on the existence of a subdynamics.56

APPENDIX B: SHORT-TIME DECOHERENCE IN NON-
MARKOVIAN SYSTEMS

In this appendix, we formally show how to obtain the
short-time limit to the exact completely positive non-
Markovian dynamical map, governing the evolution of �S in
the form

�S�t� = Tc exp

0

t

K�t��dt���S�0�

= Tc exp�
0

t

dt��− iLeff�t�� − G�t�����S�0� , �B1�

where Leff�t� is a still undetermined effective Liouvillian,
and G�t� is the dissipator term. It is well known that the form
above holds for the dynamical semigroup in the Markov ap-
proximation, where the time-independent semigroup genera-
tor −iLeff−G=const is of the well-known Lindblad form57,58

that ensures the map’s complete positivity.
Here, we will perform the short-time Taylor expansion of

the exact equation �14� up to the second order in time:

�S�t� = �S�0� + t�d�S

dt
�

0
+

t2

2
�d2�S

dt2 �
0

+ o�t3� , �B2�

and we will identify the terms in the first and second deriva-
tives from the desired equation �B1�:

�d�S

dt
�

0
= �− iLeff�0� − G�0���S�0� , �B3a�

�d2�S

dt2 �
0

= 
− i�dLeff

dt
�

0
− �dG

dt
�

0
��S�0�

+ �− iLeff�0� − G�0��2�S�0� , �B3b�

with those obtained from the exact evolution described by
Eq. �14�.

Indeed, by using the initial conditions R�0�=0 and
V�0,0�=1 given in Eqs. �9a� and �9b�, from Eq. �14�, we
directly obtain

�d�S

dt
�

0
= − i�L11 + L12M��S�0� = − i�HS + �Hint�,�S�0�� .

�B4�

Here, we have used the facts that L11 is generated by the

Hamiltonian HS+H̄int, where H̄int=TrE�Hint� /dE, while

L12M is generated by the Hamiltonian �Hint�−H̄int, where
�Hint�=TrE��EHint� is the averaged interaction Hamiltonian
�see Appendix B 1�. Consequently,

Leff�0� = L11 + L12M = �HS + �Hint�, . . . � , �B5a�

G�0� = 0. �B5b�

Taking the first derivative of Eq. �14� and employing R�0�

=0, � dR
dt

�
0= iL21, V�0,0�=1, and � dV�t,0�

dt
�

0= iL22 �Eqs. �9a�
and �9b��, we directly obtain

�d2�S

dt2 �
0

= − �L12L21 + L12L22M��S�0�

− L11�L11 + L12M��S�0� . �B6�

After subtracting �−iLeff�0��2�S�0� from � d2�S

dt2
�

0
, what we ob-

FIG. 5. �Color online� Two decompositions of the total SE Liou-

ville space: the first one �right� is into the eigenspaces of P̄, induced
by the uniform statistical operator �̄E. �System Liouville space and

P̄ unit eigenspace are equivalent.� The other decomposition is into
R�P�, the range of the projector P induced by the initial environ-
mental statistical operator �E, and N�P†�, the null space of P† and
orthocomplement to R�P�. These two decompositions enable us to
construct the mapping M used in the reduced dynamics �14�.
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tain is the action of operator −i� dLeff

dt
�
0− � dG

dt
�
0 on �S�0�. There-

fore, we will introduce operator � as

2� 	 i�dLeff

dt
�

0
+ �dG

dt
�

0
, �B7�

where

2� = �L12L21 + L12L22M� − L12M�L11 + L12M� .

Operator � contains essential information on the directions
of coherence loss in both non-Markovian and Markovian
systems. After a straightforward calculation, documented in
Appendix B 1, one can obtain the matrix elements of � in
the tensor-product basis of the system Liouville space:

�����
�� =

1

2�
k

�E
k��Hint

2 �k��
k� 	�

�� − 2�
k�

�Hint�k��
k���Hint�k�

k��

+ �Hint
2 �k��

k��	��
� � −

1

2
���Hint�2���

� 	�
��

− 2�Hint���
� �Hint��

�� + ��Hint�2��
��	��

� � , �B8�

where, for simplicity, the environmental basis is assumed to
be the eigenbasis of the environment initial statistical opera-
tor �E. In a more compact form, the action of � on any
vector �S from the system Liouville space can be given as

��S =
1

2
TrE���E � �S�HintHint − 2Hint��E � �S�Hint

+ HintHint��E � �S�� −
1

2
��S�Hint��Hint�

− 2�Hint��S�Hint� + �Hint��Hint��S� . �B9�

An interaction Hamiltonian can be always written as

Hint = �
i

imax

f i � �i,

where f i are Hermitian operators on the environment Hilbert
space, while �i are Hermitian operators on the system Hil-
bert space. With this form of the interaction in mind, one can
compactly write

��S =
1

2�
i,j

��f if j
†� − �f i��f j

†����i� j
†�S − 2� j

†�S�i + �S�i� j
†�

= −
1

2�
i,j

��f if j
†� − �f i��f j

†�����i,�S� j
†� + ��i�S,� j

†�� ,

�B10�

where, as before, �¯�=TrE��E¯ �.
From its definition �B7�, operator � satisfies 2�

= i� dLeff

dt
�
0+ � dG

dt
�
0. If we look at the matrix elements of the

matrix �Eq. �B10��:

mij = �f if j
†� − �f i��f j

†� ,

we immediately note that mij =m
ji
* due to the Hermiticity of

f�s. As a result,

dLeff

dt
= 0, � =

1

2
�dG

dt
�

0
. �B11�

Furthermore, m is a positive-definite matrix, since for any
complex imax column c= �c1 , . . . ,cimax

�T, the following holds:

�c�m�c� = �
i,j

ci*mijc
j

= �
i,j

ci*��f if j
†� − �f i��f j

†��cj

= �
i,j

TrE��E�ci*f i��cj*f j�†�

− TrE��Eci*f i�TrE��Ecj*f j�*

= TrE��E��
i

ci*f i���
i

ci*f i�†�
− �TrE��E��

i

ci*f i���2
� 0. �B12�

The last inequality can be obtained by noting that, for any
matrix a,

TrE��Eaa†� = �
k,k�

�E
k �ak

k��2 � �
k

�E
k �ak

k�2 � �
k

��E
k �2�ak

k�2

� ��
k

�E
k ak

k�2
= �TrE��Ea��2. �B13�

As a result, we conclude that −� has the form expected from
the Lindblad dissipator �it has the units of t−2, though, unlike
the Lindblad dissipator that has the units of t−1�.

Up to the second order in time, the generator K of the
non-Markovian map �13� can now be approximated as

K�t� � − iLeff − 2�t + o�t2� , �B14�

where Leff	Leff�0� from Eq. �B5a�, and � is given in Eq.
�B8�.

How to calculate L12M and �

L12M can be found as

�L12M�
����
��

= �
j=1

dE−1

����L�bj,�����M
j

= �
j=1

dE−1

����L�bj,�����
�bj,���������˜ �

����������˜ �
�B15�

For a fixed �, �, there is a dE-dimensional space spanned
by all �i� , i��. A unit operator in this space can be written as
�i=1

dE−1�bi,����bi,���+ ��������=1��:

�L12M�
����
��

= �
j=1

dE−1

����L�bj,�����M
j

= ����L�1���� − �������������

������˜ �
1

����������˜ �
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=
����L�����˜ �

����������˜ �
− ����L������

= �
i,j=1

dE

�i�,i��L�j��, j�����E
j −

1

dE
�

= �
i=1

dE

�hi��
i� 	��

� − hi�
i��	��

� ���E
i −

1

dE
�

= �
i=1

dE

��Hint�i��
i� 	��

� − �Hint�i�
i��	��

� ���E
i −

1

dE
� .

�B16�

The last line is easily obtained by showing that the contribu-
tions from the environment Hamiltonian ��Henv�i�

i�

= �HE�i
i	�

�� and from the system Hamiltonian ��Hsys�i�
i�

= �HS��
�� vanish.

When one deals with interaction Hamiltonians of the hop-
ping type, i.e., those that contain an odd number of environ-
mental creation and annihilation operators and therefore nec-
essarily alter the environmental state, all �Hint�i��

i� =0, and
clearly L12M=0, which we use in Appendix C. Also, when
the statistical operator is uniform ��E= �̄E�, L12M=0. Note
how this term accounts for the information influx from the
environment because it captures the deviation of the environ-
ment statistical operator from the uniform statistical operator
�the uniform statistical operator carries the maximum infor-
mation entropy, i.e., environment has no information to
transmit�.

In order to calculate �, which was defined as 2�
=L12L21+L12L22M−L12M�L11+L12M� in Eq. �B7�, we
should first note that L12M�L11+L12M� is commutator-
generated, i.e.,

L12M�L11 + L12M� = ��Hint� − H̄int,�HS + �Hint�, . . . �� .

The term L12L21+L12L22M can be rewritten as

�L12L21 + L12L22M�����
��

= ����L2 − LP̄L�����˜ �
1

����������˜ �

= ����L2�����˜ �
1

����������˜ �

− �
�,�=1

dS

����L��������L�����˜ �
1

����������˜ �

= �
i,j=1

dE

�i�,i��L2�j��, j����E
j

−
1

dE
�

i,j,k=1

dE

�
�,�=1

dS

�E
j �i�,i��L�k�,k���k�,k��L�j��, j��� ,

�B17�

where the eigenbasis of the environment initial statistical op-

erator �E is chosen to be the environmental basis. Upon a
straightforward �and somewhat lengthy� calculation, with the
only constraint being that ��E ,HE�=0, which is typically sat-
isfied, we obtain Eq. �B8�.

APPENDIX C: TWO ADDITIONAL EXAMPLES

The following two examples serve to illustrate that the
usefulness of the coarse-grained map �22� may extend be-
yond the strict validity specified by Eq. �24� and may offer a
particularly simple way to identify the steady state alone
from first principles.

The first example �C1� is analytically solvable and pos-
sesses the long-time Markovian evolution regardless of the
interaction strength. We show here that there exists a math-
ematical coarse-graining time �, shorter than any other time
scale in the system or environment, so that the exact long-
time Markovian evolution coincides with that obtained from
the short-time evolution by coarsening over � �Eq. �22��.

On the second example �C2�, we show that relaxation
toward the correct equilibrium state is easily obtained by
using Eq. �22� �or equivalently, by employing Theorem 2 in
Sec. III B 2�.

1. Spin-boson model with pure dephasing

One of the few analytically solvable78,94–98 open system
problems is that of a two-level system coupled to a
dephasing-only boson bath, with the relevant Hamiltonians
given by

HS =
�

2
�z, HE = �

q�
�q�bq�

†bq� +
1

2
� ,

Hint = �
q�

�z�g��q��bq� + g��q��*bq�
†� . �C1�

Here, �z is the Pauli matrix, bq�
† and bq� and the boson creation

and annihilation operators of the q�th boson mode, respec-
tively, �� /2 are the system energy levels �divided by ��,
and �q� is the boson mode frequency. The boson modes are
initially in a thermal state with �nq��= �bq�

†bq��= 1
exp���q/kBT�−1 .

Because of the interaction linear in environment creation and
annihilation operators, �Hint�=0, so LS=Leff:

Leff = LS = ��
0 0 0 0

0 1 0 0

0 0 − 1 0

0 0 0 0
� , �C2�

where the rows and columns are ordered as 1= �+ ��+�,
2= �+ ��−�, 3= �−��+�, 4= �−��−� �� refer to the positive and
negative �upper and lower� energy states�. Operator � can be
calculated according to Eq. �19� �also Eq. �B8�� as

� = �d�
0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0
� ,
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�d = 2�
q�

�g��q���2 coth� ��q

2kBT
�

= 2
0

�

d�D����g����2 coth� ��

2kBT
� , �C3�

where D��� is the density of boson states.
LS and � obviously commute, and their common zero

eigenspace �N���=N�Leff�� contains all density matrices
with zero off-diagonal elements. This means that, for a given
initial statistical operator, the off-diagonal matrix elements
will decay to zero while the diagonal elements remain un-
changed:

��S�t��++ = ��S�0��++, ��S�t��−− = ��S�0��−−,

��S�t��+− = ��S�0��+−e−i�t−�d�t,

��S�t��−+ = ��S�0��−+e+i�t−�d�t. �C4�

The steady state will be determined by simply annulling the
off-diagonal elements. This is the correct steady state, as
shown in the exact solution.38

Instead of exp�−�d�t�, in the exact solution, decoherence
is seen through the term exp�−��t��, where the ��t�, the de-
coherence exponent, behaves as

��t� = 
0

�

d�2D����g����2 coth� ��

2kBT
� sin2��t/2�

��/2�2 .

�C5�

For short times, ��t���dt2, as should be expected, because
we know our expansion �18� �also Eq. �B14�� is exact up to
the second order in time. In the long-time limit for ��t�, only
the low frequency contributions survive, since

limt→�

sin2��t/2�

��/2�2t
=�	���, so

��t → �� = t lim
�→0

2�D����g����2 coth� ��

2kBT
� . �C6�

We need to match this long-time behavior of ��t� with our
coarse-grained term �d�t in order to obtain �,

� = lim
t→�

��t�
�dt

=

lim�→0 2�D����g����2 coth� ��

2kBT
�

2
0

�

d�D����g����2 coth� ��

2kBT
� .

�C7�

Let us consider the example of an Ohmic bath �e.g., p. 228 of
Ref. 38�, with D����g����2= 1

4� exp�−� /�c� and �c being
a density-of-states cutoff frequency. Typically, ��c�kBT. In
the numerator, one can approximate coth� ��

2kBT ��
2kBT

�� , while
the coth function in the denominator is always greater than 1,
yielding

� � � kBT

��C
�2�

�c



2�

�c
. �C8�

Being typically the largest frequency scale in the full SE
problem, �c sets the shortest physical time scale. Clearly, �
is even shorter than the period associated with �c, which
justifies our use of the short-time expansion and subsequent
coarse graining.

Note the long-time behavior exp�−t /�T� of the decoher-
ence term �, where �T=� /�kBT is the thermal correlation
time. However, our time � is the mathematical coarse-
graining time, which is very short. The relationship between
the correct physical correlation-loss time and the mathemati-
cally appropriate time is

� = ��d�T�−1. �C9�

2. Jaynes-Cummings model in the rotating-wave
approximation

The Jaynes-Cummings Hamiltonian in the rotating-wave
approximation99–102 describes the decay of a two-level sys-
tem in the presence of a single boson mode of resonant fre-
quency. The relevant Hamiltonians are

HS =
1

2
��z, HE = ��b†b +

1

2
� ,

Hint = g�b†�− + b�+� . �C10�

Here, �z, �+= ��x+ i�y� /e, and �−= ��x− i�y� /2 are the Pauli
matrices, b† and b are the boson creation and annihilation
operators, respectively, �� /2 are the system energy levels
�in units of frequency� and � is also the boson mode fre-
quency, and g is a parameter measuring the interaction
strength. The boson mode is initially in a thermal state with
�n�= �b†b�= 1

exp���/kBT�−1 . As in the spin-boson example, Leff

=LS because of the interaction linear in environment creation
and annihilation operators:

Leff = LS = ��
0 0 0 0

0 1 0 0

0 0 − 1 0

0 0 0 0
� . �C11�

Operator � can be calculated according to Eq. �19� �also
Eq. �B8�� as

� =
g2

2 �
2�n� + 2 0 0 − 2�n�

0 2�n� + 1 0 0

0 0 2�n� + 1 0

− 2�n� − 2 0 0 2�n�
� .

�C12�

LS and � commute, and we immediately note two common
one-dimensional eigenspaces: �+− is associated with the LS
and � eigenvalues � and g2�2�n�+1� /2, respectively, while
�−+ is associated with the eigenvalues −� and g2�2�n�
+1� /2.
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On the other hand, the space spanned by ������ and
������ is the null space of Leff. Solving the eigenproblem of
� reduced to this space gives

det
g2��n� + 1� − � − g2�n�
− g2��n� + 1� g2�n� − �

� = 0,

� = 0 and � = �d 	 g2�2�n� + 1� . �C13�

An eigenvector �0= ��++
0 ,�−−

0 �T corresponding to the zero
eigenvalue of the matrix � is characterized by

�−−
0 = �++

0 �n� + 1

�n�
. �C14�

If we are looking for a statistical operator that belongs to the
zero eigenspace of �, it also has to satisfy the constraint of
the unit trace, which fixes

�++
0 =

�n�
2�n� + 1

, �−−
0 =

�n� + 1

2�n� + 1
. �C15�

One recognizes these components as the thermal equilibrium
values of the population of the upper and lower levels of our
two-level system, respectively �see, for instance, p. 149 of
Ref. 38�. Therefore, by seeking the steady state in
N����N�Leff�, we have obtained the physically correct
result.
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