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Thermoelectric properties of ultrathin silicon nanowires
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We calculate the room-temperature thermoelectric properties of highly doped ultrathin silicon nanowires
(SiNW) of square cross section (3 × 3 to 8 × 8 nm2) by solving the Boltzmann transport equations for electrons
and phonons on an equal footing, using the ensemble Monte Carlo technique for each. We account for the
two-dimensional confinement of both electrons and phonons and all the relevant scattering mechanisms, and
present data for the dependence of electrical conductivity, the electronic and phononic thermal conductivities,
the electronic and phonon-drag Seebeck coefficients, as well as the thermoelectric figure of merit (ZT ) on the
SiNW rms roughness and thickness. ZT in ultrascaled SiNWs does not increase as drastically with decreasing
wire cross section as suggested by earlier studies. The reason is surface roughness, which (beneficially) degrades
thermal conductivity, but also (adversely) degrades electrical conductivity and offsets the Seebeck coefficient
enhancement that comes from confinement. Overall, room-temperature ZT of ultrathin SiNWs varies slowly
with thickness, having a soft maximum of about 0.4 at the nanowire thickness of 4 nm.
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I. INTRODUCTION

Thermoelectric (TE) phenomena include conversion of
electricity to heat and heat to electricity using solid-state
devices.1–3 Suitability of a material for thermoelectric ap-
plications at temperature T is judged from its figure of
merit ZT = S2σT/κ , where S, σ , and κ are the Seebeck
coefficient (thermopower), electrical conductivity, and thermal
conductivity, respectively. Highly doped semiconductors make
the best thermoelectric materials4,5 because heat is carried pre-
dominantly by the lattice, so thermal conductivity κ is largely
decoupled from the power factor S2σ . ZT > 3.0 is required
to replace conventional chlorofluorocarbon (CFC) coolers by
TE coolers, but increasing ZT of bulk semiconductors beyond
1.0 has been a challenge.4

Ideally, we want to improve the power factor S2σ while
simultaneously reducing thermal conductivity κ .6 Nanostruc-
turing could, in principle, bring about both of these benefits.7,8

On the one hand, inclusion of various size nanostructured
obstacles can scatter phonons of different wavelengths and
quench conduction of heat. Indeed, high figures of merit
due to low thermal conductivity have been demonstrated on
materials incorporating nanoscale inclusions.9–11 On the other
hand, Hicks and Dresselhaus12,13 pioneered the concept that
nanostructuring, through the modification of the density of
states for electrons and holes, could significantly enhance
the Seebeck coefficient and consequently the power factor.
Nanowires are particularly interesting in this regard because
of their sharp density of states. Recent experimental work on
rough silicon nanowires14,15 demonstrated room temperature
ZT ∼ 0.6, nearly two orders of magnitude above the bulk-
silicon value of ZT = 0.01. These are exciting results as they
brought silicon, a cheap and abundant semiconductor, into the
realm of plausibility for thermoelectric applications. It is now
fairly certain that the enhanced ZT in these experiments came
primarily from a drastic thermal conductivity degradation
because the wires were very rough (rms roughness even in
the nanometer range)16 and most of them were too thick
(20–50 nm) for the quantum confinement effects to be really
significant. However, Boukai et al.14 also proposed that the

phonon-drag component in very thin nanowires, especially at
lower temperatures, may be responsible in part for the ZT

enhancement.
In ultrathin wires, thermal conductivity is expected to

be very low, based on theoretical work using molecu-
lar dynamics,17–20 nonequilibrium Green’s functions in the
harmonic approximation,21–23 and the Boltzmann transport
equation addressing phonon transport.24–28 Theoretical work
focusing on the electronic part of the picture29–34 indicates that
confinement benefits to the power factor should be realizable
in ultrathin wires; however, they have not been reported
experimentally.8 Therefore, whether strong confinement in
nanowires can indeed bring about both low thermal conduc-
tivity and enhanced thermoelectic power factor and whether
unusual features such as enhanced phonon drag emerge due to
nanostructuring are presently open questions.

In this paper, we present a simulation of electronic and
thermal transport in ultrathin square silicon nanowires (cross
sections ranging from 3 × 3 to 8 × 8 nm2), highly doped
and surrounded by a native oxide. Transport of charge
and heat is described by solving the Boltzmann transport
equations (BTEs) for both electrons and acoustic phonons
on an equal footing by using the ensemble Monte Carlo35,36

(EMC) technique for each. Electronic states are calculated
based on a self-consistent Schrödinger-Poisson solver within
the effective mass framework,37,38 appropriate for ultrathin
wires.39,40 Acoustic phonon intravalley, intervalley, ionized
impurity, and surface-roughness scattering (according to gen-
eralized Ando’s model38,41–43) have been accounted for in
the electronic transport simulation. In the phonon simulation,
we work with bulk instead of confined phonons, as the
one-dimensional to three-dimensional (1D to 3D) crossover
for wires of thicknesses such as ours happens at temperatures
considerably lower than 300 K.44 The phonons undergo
three-phonon normal and umpklapp scattering, impurity, and
surface-roughness scattering. In the phonon simulation, the
random rough surface of a SiNW is numerically generated
based on an autocorrelation length and rms height, and is
directly included in the phonon EMC kernel. The wires in this
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study are very thin, so we consider rms roughnesses in the
range � = 0.2 nm [Si/SiO2 interface quality in the comple-
mentary metal-oxide-semiconductor (CMOS) technology] to
0.5 nm. Roughnesses much higher than 0.5 nm would likely
mean destruction of ultrathin wires.

Our study shows pronounced decreases in electrical and
thermal conductivities with decreasing wire thickness and in-
creasing roughness. As in the bulk, the electronic contribution
to thermal conductivity remains negligible with respect to the
lattice contribution, and the phonon-drag Seebeck coefficient is
much smaller than the electronic one. The electronic Seebeck
coefficient increases with decreasing wire thickness; however,
the power factor decreases overall, as the decrease in electrical
conductivity as the wires become thinner negates the increase
in the squared Seebeck coefficient. Overall, the ZT in ultrathin
nanowires is greater by a factor 20–40 than the bulk value and
its variation with thickness is fairly weak. There is a broad
maximum of about 0.4 for the SiNW of thickness 4 nm and a
reasonably high rms roughness of 0.5 nm.

This paper is organized as follows: In Sec. II, we present
the calculation of electrical conductivity from electronic EMC.
In Sec. III, we calculate thermal conductivity and give details
on the generation of a random rough surface with a given
rms roughness and correlation length for the inclusion in the
phonon EMC. The Seebeck coefficient calculation is presented
in Sec. IV. In Sec. V, the thermoelectric coefficients calculated
in the previous sections are used to compute the ZT in ultrathin
SiNWs. In Secs. IV and V, we discuss the influence of surface
roughness on the density of states, the Seebeck coefficient,
and ZT . We conclude with a brief summary and some final
remarks in Sec. VI.

II. ELECTRICAL CONDUCTIVITY

The SiNWs for thermoelectric applications are very highly
doped to increase electrical conductivity. The cross sections of
the SiNW considered in this study are between 3 × 3 nm2 to
8 × 8 nm2 and the wire is surrounded on all sides by a thermal
oxide of thickness 1 nm. The silicon channel is assumed to be
n-type doped to 1.6 × 1019 cm−3 with arsenic (same as the
doping in Ref. 14). Thermoelectric coefficients (the Seebeck
coefficient, electrical conductivity, and thermal conductivity,
required to estimate the ZT of a material) are calculated by
solving the electron and phonon BTEs.

The simulator developed to calculate electrical conductivity
has two components: calculation of electronic states across
the wire and a transport kernel that finds the distributions in
those states. Electronic states are found from a self-consistent
2D Poisson–2D Schrödinger solver within the effective mass
framework,37,38 shown to be valid for the wire cross sections
in this study.40 The electronic band structure in SiNWs is
altered from that of bulk silicon due to 2D confinement.45–48

This effect is included through the effective mass and the
band-gap variation extracted from the band structure obtained
using sp3d5s∗ tight-binding model.39,46,48 The finite barrier
at the Si/SiO2 interface results in the electron wave-function
penetration through the interface and into the oxide. The
electric field and the wave functions are forced to zero
at the air/SiO2 interfaces. The ARPACK package49 is used
to solve the 2D Schrödinger equation and the successive

over-relaxation (SOR) method is used to solve the 2D Poisson
equation.

The EMC transport kernel37,38,50,51 is used to simulate
electron transport along the wire axis under the influence
of a low lateral electric field. The long wire approximation
implies that the transport is diffusive (the length exceeds
the carrier mean-free path) and therefore justifies the use of
the ensemble Monte Carlo method35,36 to simulate electron
transport. Electrons are initialized such that their average
kinetic energy is (1/2)kBT (thermal energy for 1D) and
are distributed among different subbands in accordance with
the equilibrium distribution of the states obtained from the
Poisson-Schrödinger solver. Since the electrons are confined
in two transverse directions, they are only scattered in either
the forward or the backward direction; consequently, just the
carrier momentum along the wire needs to be updated after
each scattering event. The doping level is in the degenerate
limit, therefore the Pauli exclusion principle is included in
the Monte Carlo simulation via the rejection technique.52 It
is incorporated by checking if the final state is empty before
scattering. The electron is allowed to undergo a scattering
event only if the final state is empty; if not, the scattering event
is treated as self-scattering.52 Upon reaching a steady state
(indicated by the saturation of the average electron energy and
drift velocity), conductivity is calculated from the ensemble
average of the electron velocities.35

The roughness at the Si/SiO2 interface is well described
by an exponentially varying autocorrelation function, defined
by a rms roughness � and a correlation length �.53 The
rate of surface-roughness scattering (SRS) is calculated from
Ando’s model,41 modified to account for the 2D confinement of
electrons in SiNWs.42,43 The derivations and expressions used
for the SRS and phonon scattering rates can be found in Ref. 38.
We assume the correlation length to be 2.5 nm as in CMOS
interfaces,53 but it is likely even lower in chemically roughened
SiNWs. As the wires we consider throughout this paper are
very thin (3 × 3 to 8 × 8 nm2), the roughness rms height
can not be excessive. The rms roughness of CMOS-quality
Si/SiO2 interfaces is about 0.2 nm, which we take as the
lower realistic limit. We assume the upper limit in intentionally
roughened ultrathin wires to be 0.5 nm, which is considerable
given their size (in contrast, the wires in Ref. 15 are much
thicker, ∼50 nm, and their rms roughness appears to be as
high as several nanometers16).

As the wires considered for thermoelectric applications are
heavily doped, scattering from ionized impurities is expected
to play a crucial role in determining electrical conductivity σ .
Therefore, in addition to SRS and phonon scattering,37,38,54

scattering due to impurities is also included in the calculation
of σ . At densities above 1019 cm−3, the Debye-Hückel model
for screening has been shown to overestimate the mobility,
therefore we use degenerate Thomas-Fermi screening in
the calculation of impurity scattering.55,56 The use of a
degenerate screening length has been shown to give the correct
mobility behavior at high doping densities.55,56 The expression
for the electron-impurity scattering rate is derived in the
Appendix.

It is also worth noting that scattering of electrons from
confined phonons in lightly doped wires reduces the mobility
by about 10% with respect to scattering from unconfined
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FIG. 1. (Color online) Electrical conductivity in square SiNWs as
a function of the wire cross section for different interface roughness
rms heights � (� = 2.5 nm). The rapid drop in conductivity for the
wires of cross section below 6 × 6 nm2 occurs because of a significant
increase in surface-roughness scattering.

phonons, but phonon confinement plays a negligible role in
the calculation of electrical conductivity in thin, highly doped
wires.38

The calculated electrical conductivity as a function of
the wire cross section and rms roughness at the Si/SiO2

interface is shown in Fig. 1. Electrical conductivity in SiNWs
decreases with decreasing wire cross section and increasing
rms roughness at the interface. For relatively large wires,
intervalley phonon and impurity scattering dominate electronic
transport. For ultrathin wires (below the 6 × 6 nm2 cross-
sectional area), the rolloff in σ occurs because of the rapid
increase in the confinement-induced part of SRS.38 Except for
the impurity scattering rate calculation, which is presented in
Appendix A, all the other details of the electrical conductivity
calculation have been documented in detail in Refs. 38
and 57.

III. THERMAL CONDUCTIVITY

Electrons and phonons both contribute to thermal conduc-
tivity. The lattice thermal conductivity (κl) is calculated by
solving the phonon BTE using the ensemble Monte Carlo
technique. The electronic contribution to thermal conductivity
is calculated by solving the 1D electron BTE under the
relaxation-time approximation (RTA).

A. Ensemble Monte Carlo for phonon transport in SiNWs

The EMC phonon transport kernel can treat the normal (N)
and umklapp (U) three-phonon scattering processes separately.
This fact is important because only the U processes (net
momentum in the case of U processes is conserved up to an
integer multiple of a reciprocal lattice vector) directly affect
the heat conduction, whereas the N processes (net momentum
is conserved) aid the U processes indirectly by redistributing
phonons among different branches, thereby increasing or
decreasing the probability of a U process.

The use of EMC also enables us to treat surface-roughness
scattering of phonons in real space: an actual surface, defined
by an exponential autocorrelation length and rms roughness,

FIG. 2. (Color online) An exponentially correlated surface gen-
erated using FFT for � = 0.25 nm and � = 5 nm. (Inset) A sample
trajectory of a phonon hitting a groove in the surface and spending
some time bouncing around before getting out.

can be directly included in the EMC kernel. Since phonon-
boundary scattering is the dominant mechanism by which
phonons are randomized in ultrathin wires, the use of a
real-space random surface rather than a specularity parameter
becomes very important. When a phonon hits a rough surface,
it spends some time bouncing around before entering the wire
again. Employment of a real surface in a way captures the
localization of phonons.58 A sample trajectory of a phonon
getting temporarily localized near a rough boundary is shown
in the right panel of Fig. 2.

At room temperature, the average wavelength of acoustic
phonons is about 1 nm; therefore, spatial confinement has
little effect on them for the cross sections considered in this
study and we treat them as bulk phonons. The bulk-phonon
approximation has also been shown to be valid for the purposes
of phonon transport in a recent detailed study by Prasher et al.44

In their work, they showed that the bulk-to-1D transition for
phonons in SiNWs of diameters 2.7 and 10.8 nm happens
roughly below 24.1 and 6.4 K, respectively.

The EMC procedure used in this work is similar to the one
described by Refs. 25 and 59–61, but we have used a real-space
rough boundary in our study.

1. Phonon scattering rates

In addition to surface-roughness scattering of phonons,
which we discuss in detail below, we account for phonon-
phonon scattering and impurity scattering (including mass
difference and dopant scattering). The total impurity scattering
rate of a phonon of angular frequency ω is given by

�I (ω) = (Aiso + AδR + AδM )ω4, (1)

where Aiso = 1.32 × 10−45 s3 is the isotope scattering con-
stant (from Ref. 62), while AδR = 5.44 × 10−46 s3 and AδM =
5.42 × 10−45 s3 are the constants associated with the mass
difference and change in relative displacements due to dopants,
and the values have been taken from Ref. 63 for the doping
density of 1.6 × 1019 cm−3.

Phonon-phonon scattering rates are calculated separately
for transverse and longitudinal acoustic phonons (subscripts
N , U, T, and L denote normal, umklapp, transverse, and
longitudinal, respectively) based on the expressions given in
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Holland’s work:62

�T N =
{
BT NωT 4, ω < ωT Amax

0, ω > ωT Amax
(2a)

�T U =
⎧⎨
⎩

0, ω < ω1/2

BT U
ω2

sinh
(

h̄ω
KB T

) , ω > ω1/2
(2b)

�LN/U = BLN/Uω2T 3. (2c)

Here, BT N = 7.44 × 10−13 K−3, BT U = 4.4 × 10−18 s, and
BLN = BLU = 8 × 10−25 s K−3. The constants were modified
to match the thermal conductivity of bulk silicon at room
temperature. ωT Amax is the frequency at k = kmax (Brilloiun
zone edge), while ω1/2 is the frequency at k = kmax/2.

2. Surface generation

Goodnick et al.53 studied the Si/SiO2 interface with high-
resolution transmission electron microscopy (HRTEM) and
found it to be well described by an exponential autocorrelation
function (ACF). Fast Fourier transform (FFT) is a fast and
convenient method for generating surfaces from a given ACF.
In this work, we have adopted the method developed by Wu64

to generate a rough surface defined by rms � and correlation
length �.

To generate an M × N surface Zp,q , start with a real ACF
(Rr,s). We define R̃r,s by setting R̃M−1−r,N−1−s = R̃M−1−r,s =
R̃r,N−1−s = R̃r,s = Rr,s for all r = 0,1, . . . ,M/2 − 1 and s =
0,1, . . . ,N/2 − 1. The spectral density S̃k,i is found using a
Fourier transform (F)

S̃ = F(R̃). (3)

Next, we generate φk,i , a set of random phase angles
uniformly distributed in [0,2π ). To make Zp,q real, we require:

φ0,0 = φM/2,0 = φ0,N/2 = φM/2,N/2 = 0,

φM−i,0 = −φi,0 i = 1,2, . . . ,M/2 − 1,

φ0,N−j = −φ0,j j = 1,2, . . . ,N/2 − 1, (4)

φM−i,N−j = − φi,j i = 1,2, . . . ,M/2 − 1,j = 1,2, . . . ,N − 1.

Finally, we find Z with an inverse Fourier transform (F−1)

Z = F−1(
√

S̃eiφ). (5)

3. Initialization

A wire of a given length is split into a number of cells (here,
20 cells is typical) and phonons in each cell are initialized
according to the equilibrium Bose-Einstein distribution for
the appropriate temperature. For the thermal conductivity
calculation, the first and the last cell are treated as black
bodies with a high temperature TH and low temperature TL,
respectively. All the intermediate cells are initially set to the
low temperature as well.

The length of the wire is chosen such that it is much
longer than the mean-free path of phonons, so transport can
be considered diffusive. For the ultrathin wires considered
in this study, the mean-free path is on the order of the wire
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FIG. 3. (Color online) Transient temperature profile along the
wire for diffusive and ballistic phonon transport. (a) In the diffusive
transport regime, a linear temperature profile is established along
the wire when the system reaches a steady state. (b) In the ballistic
regime, the steady-state temperature is constant along the wire, with
discontinuities at the two end cells.

cross-sectional size (a few nanometers), so the wire length is
set to 200 nm. The signature of the diffusive transport limit
is a linear temperature drop in the steady state [Fig. 3(a)].
In the opposite, ballistic limit, there is a discontinuity in
the temperature profile at the contacts, while the steady-
state temperature in the wire Tss is constant throughout and
given by the Stefan-Boltzmann law of blackbody radiation:
T B

ss = [(T 4
H + T 4

L )/2]1/4 [Fig. 3(b)].57,60 The ballistic limit is
achieved by turning off all the scattering mechanisms inside
the wire (such as by lowering the temperature) and assuming
the boundary to be perfectly smooth, so phonons scatter
specularly.

The initialization of phonons involves three parts: (1) cal-
culating the number of phonons in the simulation domain; (2)
initializing phonon frequencies, wave vectors, and positions;
(3) setting up the real-space boundary conditions. Only
acoustic phonons are included in the simulation because they
are the dominant heat carriers at room temperature. The
dispersion of the transverse acoustic (TA) (twofold degenerate,
gp = 2) and longitudinal acoustic (LA) (gp = 1) phonons in
silicon in the [100] direction has been approximated with a
quadratic fit.65 From the dispersion and the Bose-Einstein
distribution function, the number of phonons N in volume
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V at temperature T can be calculated as

N = V
∑

p=LA,TA

Nw∑
i=1

1

exp
(

h̄ωi

KBT

) − 1

q2
i,p

2π2υi,p

gp�ω. (6)

Here, V is the volume, Nw is the number of spectral intervals
between 0 and ωmax

LA with uniform spectral intervals �ω =
ωmax

LA /Nw. As the number of phonons N at room temperature
is about 105 even in a small volume of (10 nm)3, a weighting
factor Wt ≈ 10–1000 is used59 in the EMC calculation in
order to calculate κl in a reasonable time, where Wt is the
number of phonons corresponding to one simulated phonon.
The number of simulated phonons is given by Ñ = N/Wt .
Once the number of phonons that need to be simulated is
calculated, the attributes of each phonon are set.

The frequency ω of each phonon is found from the
normalized cumulative number density function which is
constructed from the number of phonons Ni in the ith spectral
interval and the total number of phonons. Polarization is
obtained from the fraction of LA phonons to the total number
of phonons in the required spectral interval. From ω and
the polarization of the phonon, the magnitude of the wave
vector (q) and the group velocity can be calculated using
the dispersion relation.65 The directional components of q
are set such that phonons are isotropically distributed in the
reciprocal space. The position of the phonons is selected to
ensure uniform distribution of phonons in each cell of the
wire.

4. Phonon free flight and scattering

To calculate the lattice thermal conductivity at 300 K, TH

and TL are set to 310 and 290 K, respectively (these values
of TL and TH give a ballistic temperature of about 300 K).
After initializing the phonons in each cell with the equilibrium
distribution, they are allowed to fly and scatter. The phonon
and impurity scattering are treated in the same way as in
the previous Monte Carlo (MC) study.25 At the end of a
time step �t , the total energy (ET ) of phonons in each cell
is calculated. The new temperature of each cell after �t is
calculated from ET using numerical inversion of the energy
relation to temperature

ET

V
Wt =

∑
p=LA,TA

Nw∑
i=1

h̄ωi

exp
(

h̄ωi

KBT

) − 1

q2
i,p

2π2υi,p

gp�ω. (7)

The end cells are reinitialized to their equilibrium distribu-
tion after each �t . Whenever phonons from an intermediate
cell hit the end cells, they are absorbed (the phonon is deleted
from the simulation). When a phonon hits the rough boundary,
it is reflected specularly. The use of a rough boundary
automatically takes care of momentum randomization instead
of the commonly used specularity parameter.66 Since the
second cell is at a lower temperature than the first cell (which
is held at TH ), the heat flux entering it will be higher than the
outgoing flux. This discrepancy will result in an increase in
the cell’s temperature. As the time progresses, the temperature
in cells down the line will also increase. In a steady state, a
linear temperature profile will be established along the wire
axis. Upon reaching a steady state in the wire of length L,
Fourier’s law is used to calculate κl from the net heat flux (�,
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FIG. 4. (Color online) Lattice thermal conductivity as a function
of the SiNW cross section for different rms roughness � at the Si/SiO2

interface. Thermal conductivity in SiNWs is more than an order of
magnitude smaller than that in bulk silicon because of strong phonon-
boundary scattering.

constant along the wire in a steady state) crossing the interface
between any two adjoining cells

κl = �L

TH − TL

. (8)

To increase the calculation accuracy, κl is calculated from
� averaged over all the interfaces between cells and over a
few thousand time steps once the steady state is reached. At a
single interface,

� = Wt

W 2�t

Nc∑
i=1

h̄ω, (9)

where W is the width/thickness of the wire (so W 2 is the
cross-sectional area) and Nc is the number of phonons crossing
the interface between two adjoining cells.

In order to test the free-flight part, we first simulated
ballistic phonon transport. For this case, the surface of the
wire is smooth (generated by setting � = 0) and phonons
are allowed to fly with the velocity they gained in the
injecting contact. Under ballistic conditions, the steady-state
temperature in the wire should be same in all the cells, with
a discontinuity at the two end cells.67 The ballistic case is
tested with TH = 12 K and TL = 3 K, which corresponds
to T B

ss = 10.1 K [see Fig. 3(b)] and shows the transient
temperature profile along the wire for the ballistic case. We see
that it takes about 1.5 ns to attain the steady-state temperature
profile and the T B

ss ≈ 10.1 K as expected.

B. Lattice thermal conductivity

The lattice thermal conductivity κl , calculated using phonon
Monte Carlo simulation for varying SiNW cross section and
different surface rms roughness, is plotted in Fig. 4. κl in
SiNW decreases with decreasing wire cross section due to
strong phonon-boundary scattering. As expected, increasing
rms roughness results in a decrease in κl .

We also compare the data to the relaxation-time approxi-
mation (RTA) result for thermal conductivity, calculated based
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on

κl = KB

πW 2

∑
j

∫
dω

υj (ω)τj (ω)y2
j (ω)

[eyj (ω) − 1]2
, yj (ω) = h̄ωj

KBT
.

(10)

Here, υj is the phonon velocity and τ−1
j is the sum of the

scattering rates due to all scattering mechanisms [phonon-
phonon (2), mass-difference (1), and boundary scattering] for
a given branch j . Following Lü et al.,68 the boundary scattering
relaxation rate is given by

�j,B(ω) = 1 − p

1 + p

υj (ω)
√

π

2W
, (11)

where p is the specularity parameter whose value, a number
between 0 and 1, measures the probability of the phonon
being specularly reflected. p = 0 corresponds to the diffuse
limit, i.e., the outgoing phonon’s momentum is completely
randomized.66 Formally, an extremely large rms roughness
(about 3 nm) (Ref. 16) would be required to get the κl

corresponding to the diffuse limit; such a large rms roughness
would clearly be unrealistic in the ultrathin wires considered
here without destroying them, but it is a useful limit for
comparison. In the case of larger wires, such as those with
diameter in the ∼50-nm range, considered by Hochbaum
et al.,15 the effect of surface roughness on σ is not so
pronounced, so κl can indeed be preferentially reduced further
by roughening the surface.

C. Electronic thermal conductivity

The electronic contribution to thermal conductivity (κe) is
calculated by solving the electron Boltzmann equation. The
expression for κe is derived from the 1D electron BTE under
the RTA for a wire of cross section W×H at temperature T is
given by

κe =
2
√

2
m

πh̄W 2T

[∑
ν,n

{ ∫ √
E

∂f0(E)
∂E

(
E + Eν

n

)
τ ν
n (E)dE

}2

∑
ν,n

∫ √
E

∂f0(E)
∂E

τ ν
n (E)dE

−
∑

ν,n

∫ √
E

∂f0(E)
∂E

(
E + Eν

n

)2
τ ν
n (E)dE∑

ν,n

∫ √
E

∂f0(E)
∂E

τ ν
n (E)dE

]
, (12)

where f0(E) is the equilibrium Fermi function at energy E, EF

is the Fermi level, τ ν
n (E) is the relaxation time of electron of

charge e, mass m, and energy E in subband n of valley ν, and
Eν

n is the energy of the bottom of that subband. τ ν
n (E) includes

all the possible intrasubband, intersubband, and intervalley
scattering times.38,57

As in bulk semiconductors, the electronic portion of thermal
conductivity is proportional to electrical conductivity and
therefore κe decreases with a decrease in the wire cross section
and an increase in roughness (Fig. 5). κe has a negligible
effect on the total thermal conductivity in SiNWs, as it is more
than an order of magnitude smaller than the lattice thermal
conductivity.

IV. SEEBECK COEFFICIENT

The Seebeck coefficient has two components: electronic
(Se) and phononic (Sph, also known as the phonon-drag
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FIG. 5. (Color online) Electronic contribution to thermal con-
ductivity κe as a function of the SiNW cross section for different rms
roughness � at the Si/SiO2 interface. κe follows the same trend as the
σ variation with cross section and roughness. As in bulk silicon, κe

is much smaller than κl .

component). Se is expected to be much larger in nanowires
than in bulk materials due to the sharp density of states (DOS)
in quasi-1D materials.12 Also, Boukai et al.14 argued that there
is an appreciable phonon-drag contribution to the thermopower
in their wires, contributing to the ZT enhancement they
observed. In this section, we calculate both components of
the Seebeck coefficient in ultrathin SiNWs.

A. Electronic Seebeck coefficient

The expressions for Se derived from the 1D electron BTE
under the RTA are given by

Se = EF

eT
− 1

eT

∑
ν,n

∫ √
E

∂f0(E)
∂E

(
E + Eν

n

)
τ ν
n (E)dE∑

ν,n

∫ √
E

∂f0(E)
∂E

τ ν
n (E)dE

. (13)

The electronic component of the thermopower quantifies the
electric field that opposes the diffusion of electrons from the
hot side to the cold side. This electric field opposes the applied
field in the case of a TE cooler so it reduces the electrical
conductivity, therefore Se drops as σ increases [Fig. 6(a)].
With increasing confinement, the energy separation between
the conduction band edge and the Fermi level increases, which
results in an increase in the average energy carried by electrons;
therefore, the Seebeck coefficient increases as the wire cross
section decreases. As in bulk Si, the dominant contribution to
the Seebeck coefficient comes from Se.

B. Phonon-drag Seebeck coefficient

The phononic (i.e., phonon-drag) contribution to the See-
beck coefficient Sph is calculated from the fraction of the
electron-acoustic phonon scattering rate to the total electron
scattering rate (γ ), average velocity of acoustic phonons (υph),
relaxation time of acoustic phonons (τph), and the mobility of
electrons (μ). Sph is given by

Sph = γ υ2
phτph

μT
. (14)
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FIG. 6. (Color online) (a) Electronic and (b) phononic (i.e.,
phonon-drag) components of the Seebeck coefficient as a function
of the SiNW cross section and rms roughness �. The electronic
component of the Seebeck coefficient is more than an order of
magnitude greater than the phonon-drag component. The phonon-
drag component of S decreases with increasing roughness at the
interface because of the decrease in the mean-free path of phonons.

With decreasing wire cross section, γ and τph decrease
monotonically because of the increasing relative importance of
surface-roughness scattering with respect to internal scattering
for both electron and phonon transport. The interplay of these
two variations with the mobility variation (proportional to σ )
determines the Sph variation shown in Fig. 6(b).

The phonon-drag component decreases with increasing
randomization of phonons. Therefore, the phonon-drag com-
ponent decreases with increasing roughness of the surface.
In fact, for κl ∼ 1 Wm−1 K−1, Sph is almost two orders
of magnitude smaller than that in bulk silicon and therefore
becomes negligibly small. It should be noted that the above
arguments and results imply that Sph can not increase when κl

decreases (in contradiction with Boukai et al.14).

C. Another look at confinement and the Seebeck coefficient

According to the work of Hicks and Dresselhaus,12 a drastic
enhancement of the thermoelectric figure of merit is supposed
to be observed with thickness reduction in nanowires. The
underlying assumptions in their work included thickness-
independent mobility and thermal conductivity and a single-
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FIG. 7. (Color online) Density of states (DOS) of a 5 × 5 nm2

SiNW (black solid curve) and the effective DOS in the presence
of appreciable surface-roughness scattering, for � = 0.14 nm (red
dashed-dotted curve) and � = 0.4 nm (blue dashed curve). Rough-
ness smears the high peaks in the DOS, thereby negating potential
benefits that quantum confinement could have on the Seebeck
coefficient (Ref. 71).

subband model for electrons, so the increase is connected to
the sharp 1D density of electronic states peak near the subband
bottom. In a system with scattering, the density of states effec-
tively gets broadened as the levels acquire a finite lifetime.69

The spectral density (a concept that is essentially a generalized
density of states for interacting systems) can in principle be
obtained from a nonequilibrium Green’s function calculation
with scattering accounted for.69,70 Here, we computed the
scattering rates based on the unbroadened density of states,
as is common in ensemble Monte Carlo calculations, because
a fully self-consistent calculation of the scattering rates and
the spectral function is computationally prohibitive.

However, we can still illustrate the influence of increasing
roughness on the effective density of states in the SiNWs.
In Fig. 7, we depict what surface-roughness scattering does
to the density of states, where each energy level is assumed
broadened according to the calculated scattering rate.42 Due
to surface-roughness scattering, the sharp density-of-states
peaks get smoothened, which would bring down the Seebeck
coefficient [Fig. 6(a)] and eliminate much of the appeal
that nanowires brought to the field of thermoelectrics.
The smearing of DOS in ultrasmall nanostructures due to
roughness has been experimentally demonstrated using x-ray
absorption spectroscopy.71

V. FIGURE OF MERIT ZT

Once electrical conductivity σ , the Seebeck coefficient
S, and thermal conductivity κ have been calculated, the
TE figure of merit at room temperature is calculated from
ZT = S2σ/κT . Figure 8 shows the variation of ZT with the
wire cross section. The ZT in SiNWs is larger than that in
bulk silicon; the enhancement comes primarily because of
nearly two orders of magnitude decrease in the lattice thermal
conductivity owing to strong phonon-boundary scattering
and not to an enhancement in the power factor. ZT does
not increase dramatically with decreasing wire cross section
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FIG. 8. (Color online) Variation of ZT with the SiNW cross
section. ZT incorporating thermal conductivity from phonon Monte
Carlo with real-space roughness is presented for rms roughness
� = 0.2 nm (red solid curve) and � = 0.5 nm (dotted black curve).
ZT obtained from the RTA assuming completely diffuse boundary
scattering for phonons (specularity parameter equal to zero; solid
blue curve) overestimates ZT.

as predicted by Hicks and Dresselhauss,12 where a single
subband and mobility independent of cross section were
assumed; rather, roughening (apart from degrading thermal
conductivity) severely degrades electrical conductivity, so the
power factor drops with decreasing thickness. Overall, ZT

has a broad peak of about 0.5 at the thickness of 4 nm for the
reasonable rms roughness of 0.5 nm.

It is also interesting to note the curve that corresponds
to the approximation of fully diffuse boundary scattering of
phonons, where the rough interface is replaced by a specularity
parameter equal to zero [Eq. (11)]. This curve gives a ZT close
to 1, but would correspond to rms roughnesses of about 3 nm,16

which is unrealistic in ultrathin wires without damaging them.
Finally, let us reiterate that this paper focuses on elucidating

the interplay between confinement and roughness in ultrathin
nanowires for thermoelectric applications. For this purpose, all
the data in this paper were presented for a single doping density
1.6 × 1019 cm−3, following Boukai et al.,14 as the doping
densities of this order of magnitude are known to maximize
the figure of merit in bulk silicon. However, in nanostructures,
there is a dependence of the thermoelectric parameters on the
doping density, as discussed, for instance, recently and in detail
by Neophytou and Kosina.34

So, for completeness, in Fig. 9 we show the dependence
of the thermoelectric figure of merit of silicon nanowires
with different cross-sectional features and the maximal rms
roughness (� = 0.5 nm) as a function of the carrier density.
The range of carrier densities captures peak ZT values for
all the wires considered in this study. While it might be
tempting to strive to hit the peak value of ZT by picking
the appropriate doping density, one should not forget that
controlling the doping density becomes exceedingly difficult
in nanostructures in which there are very few dopants: the
number of dopants N has a statistical uncertainty of

√
N .

For instance, in a wire of 5 nm thickness/width and 100 nm
length, doped to 1019 cm−3, there are only N = 25 dopants,
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FIG. 9. (Color online) Variation of ZT with the doping density for
different SiNW thicknesses. � = 0.5 nm.

with
√

N = 5, so we really can not control the doping density
better than about 20%.

VI. CONCLUSION

Realistic ensemble Monte Carlo simulations of electron
and phonon transport in ultrathin silicon nanowires were
performed to calculate the thermoelectric coefficients and
the figure of merit ZT in SiNWs. The electrical conductivity
decreases with deceasing wire cross section because of the
strong increase in electron scattering with surface roughness
and phonons. For a given carrier density and with increasing
confinement, the energy separation between the conduction
band edge and the Fermi level increases, resulting in an
increase in the average energy carried by electrons; therefore,
the electronic Seebeck coefficient increases as the wire
cross section decreases. The phonon-drag component of the
Seebeck coefficient is negligibly small in SiNWs because of
a very short phonon mean-free path. Overall, the power factor
does not show orders-of-magnitude increase with decreasing
wire cross section, as predicted by earlier theoretical studies,
because the decrease in electrical conductivity with decreasing
thickness offsets the increase in the Seebeck coefficient. Also,
as in bulk silicon, the electronic contribution to thermal
conductivity is more than an order of magnitude smaller than
the contribution from phonons.

The ZT in SiNWs calculated from this themoelectric
simulation is 20–40 times larger than that in bulk silicon: the
enhancement in ZT occurs primarily because of the decrease in
the lattice thermal conductivity due to strong phonon-boundary
scattering and not due to an enhancement in the power factor.
It is extremely important to account for the actual rough
surface when solving the electron and phonon BTE in order
to properly estimate ZT in nanostructures. For easy reference,
a summary of calculated data is presented in Table I.

Greater relative advances in the power factor ought to
be expected in ultrathin p-type SiNWs than in n-type ones
because for hole transport conductivity does not drop as
dramatically with increasing confinement as it does for
electrons. The reason is that phonon-mediated intersubband
scattering for holes plays a dominant role over SRS down to
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TABLE I. Summary table: electrical conductivity σ , lattice ther-
mal conductivity κl , electronic thermal conductivity κe, the electronic
Seebeck coefficient Se, the phonon-drag Seebeck coefficient Sph, and
the figure of merit ZT for n-type Si nanowires doped to 1.6×1019

cm−3, given as a function of the nanowire thickness ranging from 3
to 8 nm and for values of the surface rms roughness � (given in the
rightmost column) ranging from 0.2 to 0.5 nm.

Nanowire thickness (nm)

3 4 5 6 7 8 � (nm)↓
σ (104 S/m) 2.0 5.1 6.6 8.4 9.1 9.5 0.2

1.6 4.4 6.0 8.0 8.7 9.1 0.3
1.3 3.8 5.3 7.3 8.1 8.6 0.4
0.9 3.2 4.7 6.7 7.6 8.0 0.5

κl (W/m K) 3.0 4.2 5.6 6.7 7.4 8.7 0.2
2.3 3.1 3.9 5.1 5.6 6.7 0.3
1.6 2.4 3.1 3.9 4.7 5.7 0.4
1.2 1.9 2.4 3.3 4.1 4.6 0.5

κe (W/m K) 0.07 0.14 0.23 0.31 0.38 0.45 0.2
0.06 0.13 0.21 0.29 0.36 0.43 0.3
0.05 0.11 0.19 0.27 0.33 0.40 0.4
0.04 0.10 0.17 0.25 0.31 0.38 0.5

Se (μV/K) 310 270 240 220 210 200 0.2
320 270 240 220 210 200 0.3
330 280 240 230 210 200 0.4
340 280 240 230 210 200 0.5

Sph (μV/K) 8.2 5.2 4.9 4.7 5.0 5.8 0.2
6.2 4.0 3.8 3.6 3.8 4.5 0.3
3.4 3.0 3.1 3.1 3.3 3.8 0.4
2.3 2.3 2.5 2.5 2.8 3.3 0.5

ZT 0.20 0.26 0.20 0.18 0.16 0.14 0.2
0.22 0.31 0.26 0.23 0.20 0.17 0.3
0.26 0.36 0.29 0.27 0.22 0.18 0.4
0.24 0.39 0.34 0.30 0.24 0.22 0.5

very small thicknesses, as demonstrated experimentally72 and
also known theoretically from work on ultrathin SOI.73 Finally,
further improvements in the power factor of both n- and
p-type SiNWs could be achieved by elimination of impurity
scattering, such as through modulation doping, gating,72 or
surface transfer doping74 as a means of achieving desired
carrier densities.
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APPENDIX: IMPURITY SCATTERING

Coulomb potential due to an ionized impurity of charge Ze,
located at R(y0,z0) from the center of the wire cross section,

felt by an electron at position [r(y,z),x] is given by

U(r,x) = − Ze2

4πεsi

√
(r − R)2 + x2

e
−

√
(r−R)2+x2

Ld , (A1)

where εsi is the dielectric constant of silicon and Łd is the
degenerate Thomas-Fermi screening length.55,56 The matrix
element for the impurity-electron scattering can be written
as

Mnm(kx,k
′
x) = − Ze2

4πεsi

∫∫
ψn(y,z)

×
⎡
⎣ 1

Lx

∫
ei(kx−k

′
x )xe

−
√

(r−R)2+x2

Ld√
(r − R)2 + x2

dx

⎤
⎦

×ψm(y,z)dy dz. (A2)

Defining q = |kx − k
′
x |,

K0(q,R) =
∫

eiqxe
−

√
(r−R)2+x2

Ld√
(r − R)2 + x2

dx, (A3)

Inm(q,R) =
∫∫

ψn(y,z)K0(q,R)ψm(y,z)dy dz, (A4)

and E and E ′ as the initial and final energies of the scattered
electron in the parabolic band approximation, the scatter-
ing rate from a single impurity using Fermi’s golden rule
is

�i
nm(kx) = 2π

h̄

Z2e4

16π2ε2
siL

2
x

∑
k

′
x

I2
nm(q,R)δ(E − E ′

). (A5)

The total impurity-electron scattering rate due to a uniform
doping density of Na is obtained by integrating over the
position R of the dopants

�imp
nm (kx) = Z2e4

16π2h̄ε2
siLx

∫
dR NaLx

×
∫

dk
′
x I2

nm(q,R)δ(E − E ′
). (A6)

Adding a nonparabolicity factor α and converting the dk
′
x

integration to dE
′
integration, Eq. (A6) becomes

�imp
nm (kx) = Z2e4Na

√
m

16
√

2π2h̄2ε2
si

(1 + 2αEf )√
Ef (1 + αEf )

∫
dR I2

nm(q±
x ,R),

(A7)

where Ef is the final kinetic energy defined in Ref. 38 and
q±

x = kx ± k
′
x is the difference between the initial and final

electron wave vectors as defined in the SRS derivation.
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