What We’ve Learned

- Summation Formulae, Induction and Bounding
- How to compare functions: $o, \omega, O, \Omega, \Theta$
- How to count the running time of algorithms
- How to solve recurrences that occur when we do (3)
- Data Structures:
 - Hash
 - Binary Search Trees
 - Heap

The World’s First Algorithm

Euclid’s Algorithm (m, n)

- Divide m by n and let r be the remainder.
- If $r = 0$, then $\text{gcd}(m, n) = n$.
- Otherwise, $\text{gcd}(m, n) = \text{gcd}(n, r)$

Summation Formulae

Arithmetic Series

$$1 + 2 + \cdots + n = \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Sum Of Squares

$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

- Often, such formulae can be proved via mathematical induction
Geometric Series

\[\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x} \]

If \(|x| < 1\), then the series converges to

\[\sum_{k=0}^{\infty} x^k = \frac{1}{1 - x} . \]

Bounding Sums by Integrals

When \(f\) is a (monotonically) increasing function, then we can approximate the sum \(\sum_{k=m}^{n} f(k)\) by the integrals:

\[\int_{m-1}^{n} f(x)dx \leq \sum_{k=m}^{n} f(k) \leq \int_{m}^{n+1} f(x)dx . \]

Harmonic Series

\[H_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{k} = \sum_{k=1}^{n} \frac{1}{k} \approx \ln(n) \]

\(O, \Omega, \Theta\) definitions

\[\Theta(g) = \{ f : \exists c_1, c_2, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n) \ \forall n \geq n_0 \} \]

\[\Omega(g) = \{ f | \exists \text{ constants } c, n_0 > 0 \text{ s.t. } 0 \leq c g(n) \leq f(n) \ \forall n \geq n_0 \} \]

\[O(g) = \{ f | \exists \text{ constants } c, n_0 > 0 \text{ s.t. } f(n) \leq c g(n) \ \forall n \geq n_0 \} \]

\(o, \omega\) Notation

\[f \in o(g) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \]

\[f \in \omega(g) \iff g \in o(f) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \]

\[f \in \Theta(g) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = c \]

- \(f \in o(g) \Rightarrow f \in O(g) \setminus \Theta(g) \).
- \(f \in \omega(g) \Rightarrow f \in O(g) \setminus \Theta(g) \).
- \(f \in \Theta(g) \iff g \in \Theta(f) \).
Remember This!

The Upshot!
- \(f \in O(g) \) is like \(f \leq g \),
- \(f \in \Omega(g) \) is like \(f \geq g \),
- \(f \in o(g) \) is like \(f < g \),
- \(f \in \omega(g) \) is like \(f > g \), and
- \(f \in \Theta(g) \) is like \(f = g \).

Functions
- Polynomials \(f \) of degree \(k \) are in \(\Theta(n^k) \).
- Exponential functions always grow faster than polynomials.
- Polylogarithmic functions always grow more slowly than polynomials.

More Algorithm Stuff
- What is the difference between in-place and out-of-place?
- How do I prove correctness of an algorithm? **Loop invariant**
 - **Base Case**: It is true prior to the first iteration of the loop.
 - **Maintenance**: It is true before a loop iteration, it is true after the loop iteration.
 - **Termination**: Hopefully, the invariant will have a useful property when the loop terminates. In this case, it would “prove” that the array is sorted.

Count ’em Up
- You should be able to look at a short code module, and write down how many times each line is done.
- Like the InsertionSort, MergeSort, and Towers of Hanoi examples in class.
- If the algorithm is recursive, you should be able to look at the recurrence and compute its running time.
Analyzing Recurrences

Deep Thoughts
To understand recursion, we must first understand recursion

- General methods for analyzing recurrences
 - Substitution
 - Master Theorem
- When we analyze a recurrence, we may not get or need an exact answer, only an asymptotic one

The Master Theorem

- Most recurrences that we will be interested in are of the form
 \[T(n) = \begin{cases} \Theta(1) & n = 1 \\ aT(n/b) + f(n) & n > 1 \end{cases} \]

- The Master Theorem tells us how to analyze recurrences of this form.
- If \(f \in O(n^{\log_b a - \epsilon}) \), for some constant \(\epsilon > 0 \), then \(T \in \Theta(n^{\log_b a}) \).
- If \(f \in \Theta(n^{\log_b a}) \), then \(T \in \Theta(n^{\log_b a \log n}) \).
- If \(f \in \Omega(n^{\log_b a + \epsilon}) \), for some constant \(\epsilon > 0 \), and if \(af(n/b) \leq cf(n) \) for some constant \(c < 1 \) and \(n > n_0 \), then \(T \in \Theta(f) \).

Sorting Algorithms

Simple Sorting Algorithms:
- Merge Sort:
 - Divide the list into smaller pieces. Sort the small pieces. Then merge together sorted lists.
- Insertion Sort:
 - Insert item \(j \) into \(A[0 \ldots j - 1] \)
- Selection Sort
 - Find \(j^\text{th} \) smallest element and put it in \(A[j] \)
- Bubble sort:
 - Make \(n \) passes through the list. If adjacent elements are out of position, swap them.

Java Collections

You need to know a little about the Java Collections

What is a Set, List, Map, SortedSet. What are the different implementations of each?

- A Set is a Collection that cannot contain duplicate elements.
- Set implementations: HashSet, TreeSet, LinkedHashSet
- A List can contain duplicate elements
- A Map is a set of (unique) keys, each key being paired with a value.
More on Hash

- In a hash table the number of keys stored is small relative to the number of possible keys.
- A hash table is an array. Given a key k, we don’t use k as the index into the array — rather, we have a hash function h, and we use $h(k)$ as an index into the array.
- Given a “universe” of keys K.
 - Think of K as all the words in a dictionary, for example $h : K \rightarrow \{0, 1, \ldots, m - 1\}$, so that $h(k)$ gets mapped to an integer between 0 and $m - 1$ for every $k \in K$.
- We say that k hashes to $h(k)$.

Storing Binary Trees

Array

- The root is stored in position 0.
- The children of the node in position i are stored in positions $2i + 1$ and $2i + 2$.
- This determines a unique storage location for every node in the tree and makes it easy to find a node’s parent and children.
- Using an array, the basic operations can be performed very efficiently.

Binary Search Tree

- A binary search tree is a data structure that is conceptualized as a binary tree, but has one additional property:

 Binary Search Tree Property

 If y is in the left subtree of x, then $k(y) \leq k(x)$
Short Is Beautiful

- SEARCH() takes $O(h)$
- MINIMUM(), MAXIMUM() also take $O(h)$
- Slightly less obvious is that INSERT(), DELETE() also take $O(h)$
- Thus we would like to keep out binary search trees “short” (h is small).

Sorted

- We saw in the lab that the Java Tree Set allowed you to iterate through the list in sorted order. How long does it take to do this?

INORDER-TREE-WALK(x)
1. if $x \neq$ NIL
2. then INORDER-TREE-WALK($\ell(x)$)
3. print $k(x)$
4. INORDER-TREE-WALK($r(x)$)

- What is running time of this algorithm?

Operations

SUCCESSOR(x)
- How would I know “next biggest” element?
- If right subtree is not empty: MINIMUM($r(x)$)
- If right subtree is empty: Walk up tree until you make the first “right” move

INSERT(x)
- Just walk down the tree and put it in. It will go “at the bottom”

DELETE()
Heaps

- Heaps are a bit like binary search trees, however, they enforce a different property.

Heap Property: Children are Horrible!

- In a max-heap, the key of the parent node is always at least as big as its children:
 \[k(p(x)) \geq k(x) \quad \forall x \neq \text{root} \]

Heapify

HEAPIFY(x)

1. Find largest of \(k(x), k(\ell(x)), k(r(x)) \)
2. If \(k(x) \) is largest, you are done
3. Swap \(x \) with largest node, and call \text{HEAPIFY()} \ on the new subtree

- \(\Rightarrow \) \text{HEAPIFY} a node in \(O(\log n) \)
- Alternatively, \text{HEAPIFY} node of height \(h \) is \(O(h) \)
- Building a heap out of an array of size \(n \) takes \(O(n) \)

Operations on a Heap

- The node with the highest key is always the root.
- To delete a record
 - Exchange its record with that of a leaf.
 - Delete the leaf.
 - Call \text{heapify}().
- To add a record
 - Create a new leaf.
 - Exchange the new record with that of the parent node if it has a higher key.
 - This is like insertion sort – just move it up the path...
 - Continue to do this until all nodes have the heap property.
 - Note that we can change the key of a node in a similar fashion.

Time for Heap Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Time Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREATE</td>
<td>(O(n))</td>
</tr>
<tr>
<td>MAXIMUM</td>
<td>(\Theta(1))</td>
</tr>
<tr>
<td>HEAPIFY</td>
<td>(O(\log n)), or (O(h))</td>
</tr>
<tr>
<td>EXTRACT-MAX</td>
<td>(O(\log n))</td>
</tr>
<tr>
<td>HEAP-INCREASE-KEY</td>
<td>(O(\log n))</td>
</tr>
<tr>
<td>INSERT</td>
<td>(O(\log n))</td>
</tr>
</tbody>
</table>
Heap Sort

- Suppose the list of items to be sorted are in an array of size n.
- The heap sort algorithm is as follows.
 1. Put the array in heap order as described above.
 2. In the i^{th} iteration, exchange the item in position 0 with the item in position $n - i$ and call heapify().
- What is the running time? $\Theta(n \lg n)$

Misery Loves Company

I’m in a baaaaaaaaaaaaaaaaad mood.

- Quiz on Wednesday
- I will be out of town Tuesday and Wednesday: I am going to drive to Indianapolis and punch Peyton Manning in the nose
- It is closed book, closed notes.
- I will give you a piece of paper with some useful formulae