Uncapacitated Lot Sizing

Lot sizing is the canonical production planning problem.

Given a planning horizon $T = \{1, 2, \ldots, T\}$

You must meet given demands d_t for $t \in T$

You can meet the demand from a combination of production (x_t) and inventory (s_{t-1})

Production cost:

$$c(x_t) = \begin{cases} K + cx_t & \text{if } x_t > 0 \\ 0 & \text{if } x_t = 0 \end{cases}$$

Inventory cost:

$$I(s_t) = h_t s_t$$
Let’s Solve an Example

- $T = 3$
- $d = [2, 1, 2]$
- $h = [1, 1, 0]$
- $K = 2, c = 1$

<table>
<thead>
<tr>
<th>Busy Going Backwards</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_3(0) = 2 + 2(1) = 4$</td>
</tr>
<tr>
<td>$f_3(1) = 2 + 1(1) = 3$</td>
</tr>
<tr>
<td>$f_3(2) = 0$</td>
</tr>
</tbody>
</table>

In General

A General Recursive Relationship

$$f_t(s) = \min_{x \in 0, 1, 2, \ldots} \{ c_t(x) + h_t(s + x - d_t) + f_{t+1}(s + x - d_t) \}.$$

- Let’s do a couple by hand.
- This gets tedious – so let’s code it up...

Oh Dear!

- What if $K = 250, d = [220, 280, 360, 140, 270], c_t = 2, h_t = 1$
- This might be a problem, as you need to consider producing every possible amount between 0 and 1270
- Instead, as is often the case in dynamic programming, we look for structural properties of an optimal solution that will make the algorithm more efficient.

I Love Lemmas

Lemma (Fact) 1

Let x^* be an optimal policy (production schedule). If $x_t^* > 0$, then $x_t^* = \sum_{j=0}^{T-t} d_{t+j}$ for some $j \in \{0, 1, \ldots T-t\}$

Why? Oh Why?

If Lemma 1 was false, then there would be some period t and some subsequent period $t + j$ such that production x_t^* only partially satisfied the demand in $t + j$. Say this is a quantity $0 < p < d_{t+j}$. If you produce p less at t, you still meet demands up to $j - 1$, save holding costs, and incur no additional setup cost (since production was going to have to happen in j anyway). Thus, x_t^* couldn’t have been optimal.
Mmmmmmmmm. More Lemmas.

Lemma (Factoid) 2

Let x^* be an optimal policy (production schedule). If $x^*_t > 0$ then $s_{t-1} < d_t$.

Why? Oh Why?

It’s a similar argument. If Lemma 2 was false, then there is some t such that $x^*_t > 0$ and $s_{t-1} \geq d_t$. If you defer production by one period, you will save holding costs, and incur no additional charges, so x^*_t couldn’t be optimal.

How Does This Help?

- For simplicity, assume that $s_0 = 0$ (we can fix this up later...)
- These results really helps us cut down on the size of the state space. In fact, we need only (recursively) compute the minimum cost during periods $t, t + 1, \ldots T$ as
 \[
 f_t(0) = \min_{j \in \{0, 1, \ldots, T-t\}} \{ (c_{tj} + f_{t+k+1}(0)) \}
 \]
- Where c_{tj} is the cost incurred for periods $t, t + 1, \ldots t + j$ if production during t exactly meets demands for $t, t + 1, \ldots t + j$:
 \[
 c_{tj} = K + c \left(\sum_{k=0}^{j} d_{t+k} \right) + h \left(\sum_{k=1}^{j} kd_{t+k} \right).
 \]

Another OR Application

- We have a set $A = \{1, 2, \ldots, n\}$ of activities that require exclusive use of a common resource.
 - Could be a machine or a classroom, for example
 - Activity $i \in A$ has “start time” s_i and finish time f_i

Activity Selection Problem

Select the largest set of nonoverlapping (mutually compatible) activities

More on Activity Selection

- Let $S_{ij} \subseteq A$ be the set of activities that start after activity i needs to finish and before activity j needs to start:
 \[
 S_{ij} \overset{\text{def}}{=} \{ k \in S \mid f_i \leq s_k, f_k \leq s_j \}
 \]
- Let’s assume that we have sorted the activities such that
 \[
 f_1 \leq f_2 \leq \cdots \leq f_n
 \]
- Then: $i \geq j \Rightarrow S_{ij} = \emptyset$
 - Proof:
 - Our goal is to optimally schedule all jobs in S_{ij}
 - Then, if we add two “dummy activities” $(s_0 = -\infty, f_0 = 0), (s_{n+1} = \infty, f_{n+1} = \infty)$, we need to optimally schedule jobs in $S_{0,n+1}$
Building up a Solution

- What does an optimal solution to problem on activities S_{ij} look like?
- Let $A_{ij} \subseteq S_{ij}$ be an optimal set of activities for S_{ij}
- We know that $|A_{ij}| \geq 1$ as long as $S_{ij} \neq \emptyset$
- Suppose $k \in A_{ij}$. That is, suppose job k is in an optimal solution to S_{ij}. This decomposes the problem into an optimal solution before k and an optimal solution after k.
- Specifically, we have
 \[A_{ij} = A_{ik} \cup \{k\} \cup A_{kj} \]

Building a Recursion

- From this, we can write a recursive solution. Let c_{ij} be the size of a maximum-sized subset of mutually compatible jobs in S_{ij}.
 - If $S_{ij} = \emptyset$, then $c_{ij} = 0$
 - If $S_{ij} \neq \emptyset$, then $c_{ij} = c_{ik} + 1 + c_{kj}$ for some $k \in S_{ij}$. We pick the $k \in S_{ij}$ that maximizes the number of jobs:
 \[c_{ij} = \begin{cases}
 0 & \text{if } S_{ij} = \emptyset \\
 \max_{k \in S_{ij}} c_{ik} + c_{kj} + 1 & \text{if } S_{ij} \neq \emptyset
 \end{cases} \]
- Note we need only check $i < k < j$

We Can Make It Easy

Solution Theorem
Let $S_{ij} \neq \emptyset$ and let m be the activity with the earliest finish time in S_{ij}:
\[m \in \arg \min_{k \in S_{ij}} \{f_k\}, \]
then
- Activity m is used in some optimal solution (maximum size compatible subset) of S_{ij}
- $S_{im} = \emptyset$

Proof:

Theorems Are Great!

- Characterizing the optimal solution in this manner makes our algorithmic lives much, much easier.

<table>
<thead>
<tr>
<th></th>
<th>Before Theorem</th>
<th>After Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td># subproblems in recursion</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td># choices in recursion</td>
<td>$j - i - 1$</td>
<td>1</td>
</tr>
</tbody>
</table>

To Solve S_{ij}

1. Choose $m \in S_{ij}$ with the earliest finish time. **The Greedy Choice**
2. Then solve problem on jobs S_{mj}
When Greedy?

How did we show that greedy works?

- Determine optimal substructure of problem
- Develop a recursive solution
- **Prove** that at every stage of recursion, one of the optimal choices is a greedy choice.
- Show that all but one of the subproblems induced by the greedy choice are empty

Properties of Greedy

Optimal Substructure

This is just the same as dynamic programing. An optimal solution contains within it optimal solutions to smaller problems.

Greedy Choice Property

When we are considering which choice to make, we make the solution that looks best to us now—without considering the impact on subsequent problems

Dynamic Versus Greedy

- DP and Greedy: Make a choice at each stage.
- **DP:** The choice **depends** on knowing the optimal solution to smaller problems. Thus, we have to solve from the “bottom up”. Get the solution to **all** smaller problems first in order to arrive at the solution to the bigger problem.
- Greedy: The choice can be made **before** solving the subproblems.

Next Time

- Intro to Graphs
- More Homework Due Monday:
 - Problem 16.2-1 (Show that fractional knapsack has greedy choice property)
 - Problem 16-1 (a), (c), and (d) (Making change)