Taking Stock

Last Time
- DP for Lot Sizing
- Greedy Algorithm for activity scheduling

This Time
- The Wonderful World of Graph Theory
- You should read Chap 22

Graphs

- A graph is an abstract object used to model such connectivity relations.
- A graph consists of a list of items, along with a set of connections between the items.
- The study of such graphs and their properties, called graph theory, is hundreds of years old.
- Graphs can be visualized easily by creating a physical manifestation showing the connection relationships

Graph Types

- The connections in the graph may or may not have an orientation or a direction.
- We may (or may not) allow more than one connection between a pair of items.
- We may (or may not) not allow an item to be connected to itself.

- For now, we consider graphs that are
 - undirected, i.e., the connections do not have an orientation, and
 - simple, i.e., we allow only one connection between each pair of items and no connections from an item to itself.
(A few) Applications of Graphs

- Maps
- Internet/World Wide Web
- Social Networks
- Circuits
- Scheduling
- Communication Networks
- Matching and Assignment
- Chemistry and Physics

Graph Terminology and Notation

- In an undirected graph, the “items” are usually called vertices (sometimes also called nodes).
- We denote the set of vertices as V and index them (in our code) from 0 to $n - 1$, where $n = |V|$.
- The connections between the vertices are (for now) unordered pairs called edges.
- Often, when the pair is ordered, people call them arcs.
- The set of edges is denoted E and $m = |E| \leq n(n - 1)/2$.

Graph Terminology and Notation

- An undirected graph $G = (V, E)$ is then composed of a set of vertices V and a set of edges $E \subseteq V \times V$.
- If $e = (i, j) \in E$, then
 - i and j are called the endpoints of e.
 - e is said to be incident to i and j, and
 - i and j are said to be adjacent vertices.
- The number of vertices adjacent to v in G is known as the degree of v.

More Terminology

- Let $G = (V, E)$ be an undirected graph.
- A subgraph of G is a graph composed of an edge set $E' \subseteq E$ along with all incident vertices.
- A subset V' of V, along with all incident edges is called an induced subgraph.
- A path in G is a sequence of vertices such that each vertex is adjacent to the vertex preceding it in the sequence.
- A path is simple if no vertex occurs more than once in the sequence.
- A cycle is a path that is simple except that the first and last vertices are the same.
- A tour is a cycle that includes all the vertices.
Connectivity in Graphs

- An undirected graph is said to be connected if there is a path between any two vertices in the graph.
- A graph that is not connected consists of a set of connected components that are the maximal connected subgraphs.
- Given a graph, one of the most basic questions one can ask is whether vertices \(i \) and \(j \) are in the same component.
- In other words, is there a path from \(i \) to \(j \)?
- If so, what is the shortest path (number of edges) from \(i \) to \(j \).
- (We’ll ask that today in lab)

Representing Graphs on a Computer

- **Two Graph Representations**
 - Adjacency Lists
 - Adjacency Matrix

Adjacency List

- Array of \(|V| \) sets, one for each vertex
- Vertex \(u \)'s list has all vertices such that \((u, v) \in E\)
- e.g. **Java**: private ArrayList<TreeSet<Integer>> AdjList;

Adjacency Matrix

- Matrix \(A \in \{0, 1\}^{V \times V} \)
- \(a_{ij} = 1 \) if and only if \((i, j) \in E\)

Comparing Graph Representations

- **Adjacency List**
 - Space: \(O(|V| + |E|) = O(n + m) \)
 - Time to list vertices adjacent to \(v \): \(O(\text{degree}(v)) \)
 - Time to tell if \((u, v) \in E\): \(O(\text{degree}(u)) \)

- **Adjacency Matrix**
 - Space: \(O(|V|^2) = O(n^2) \)
 - Time to list vertices adjacent to \(v \): \(O(|V|) \)
 - Time to tell if \((u, v) \in E\): \(O(1) \)

Useful Java Code

- We’ll use adjacency list in our graph implementations. (Most graphs are fairly sparse)
- The following code creates a “random” graph on \(n \) vertices, with each edge occurring independently with probability \(p \)
Random Graph Constructor

```java
public Graph(int n, double p) {
    numV_ = n;
    AdjList_ = new ArrayList<TreeSet<Integer>>(numV_);
    for (int i=0; i < numV_; i++) {
        AdjList_.add(new TreeSet<Integer>());
    }
    for (int i=0; i < numV_; i++) {
        for (int j=i+1; j < numV_; j++) {
            if (Math.random() < p) {
                insert(i, j);
            }
        }
    }
}
```

Adding an Edge

```java
public void insert(int u, int v) {
    assert(u >= 0 && v >= 0 && u < numV_ && v < numV_);
    AdjList_.get(u).add(v);
    //XXX Here we assume undirected graph
    AdjList_.get(v).add(u);
    numE_++;
}
```

Graph Search Algorithms

- There are two "workhorse" algorithms for searching graphs that form the basis for many more complicated algorithms.
 - Breadth-First Search (BFS): Search "broadly"
 - Depth-First Search (DFS): Search "deeply"
- We’ll do BFS first.
 - Don’t worry – you’ll get to do DFS too!
- BFS: Discovers all nodes at distance \(k \) from starting node \(s \) before discovering any node at distance \(k + 1 \)
- Send a “wave” out from a starting vertex \(s \)

Aside: Queue ’em up

- BFS is conveniently implemented with a data structure known as a FIFO queue.
- FIFO: First-In-First-Out. Just like a regular line, like you have to stand in at Disneyworld.
- Java has a Queue interface for you. Two methods are of specific interest are `poll()` and `add()`. You can check the docs for more.
Queue Interface

Queue<E>
- boolean `add(E e)`: Inserts the specified element into this queue
- `E poll()`: Retrieves and removes the head of this queue, or returns null if this queue is empty.

Remember queue is an interface, so you can’t really create one. You need to specify an actual implementation, e.g.

```java
Queue<Integer> myQueue = new ArrayList<Integer>();
```

BFS

BFS(V, E, s)

1. for each `u` in `V \ {s}`
2. do `d(u) ← ∞`
3. `π(u) ← NIL`
4. `d[s] ← 0`
5. `Q ← ∅`
6. `ADD(Q, s)`
7. while `Q ≠ ∅`
8. do `u ← POLL(Q)`
9. for each `v` in `Adj[u]`
10. do if `d[v] = ∞`
11. then `d[v] ← d[u] + 1`
12. `π[v] = u`
13. `ADD(Q, v)`

Analysis

- **How many times is each vertex added?**
 - Answer: Once. So `|V|` for add operation
- **How many times is adjacency list of vertex `v` scanned?**
 - Answer: Once. Since \(\sum_{v \in V} \text{size}(Adj[v]) = 2|E| \) (for undirected), we have `|E|` here.
- **Running time:** \(O(|V| + |E|) \): Linear in the input size of the graph (for adjacency list implementation)

BFS

- **Input:** Graph \(G = (V, E) \), source node \(s \in V \)
- **Output:** `d(v)`, distance (smallest # of edges) from `s` to `v` for all `v ∈ V`
- **Output:** `π(v)`, predecessor of `v` on the shortest path from `s` to `v`

Oh no! DP again

- \(δ(s, v) \): shortest path from `s` to `v`
- **Lemma:** If \((u, v) ∈ E\), then \(δ(s, v) ≤ δ(s, u) + 1 \)
Next Time

- Graphs, Graphs, and more Graphs.