Graph Search Algorithms

- There are two “workhorse” algorithms for searching graphs that form the basis for many more complicated algorithms.
 - Breadth-First Search (BFS): Search “broadly”
 - Depth-First Search (DFS): Search “deeply”

BFS: Last Time
DFS: Today

Recall—BFS

- **Input:** Graph $G = (V, E)$, source node $s \in V$
- **Output:** $d(v)$, distance (smallest # of edges) from s to v for all $v \in V$
- **Output:** $\pi(v)$, predecessor of v on the shortest path from s to v

Oh no! DP again

- $\delta(s, v)$: shortest path from s to v
- **Lemma:** If $(u, v) \in E$, then $\delta(s, v) \leq \delta(s, u) + 1$
BFS

BFS(V, E, s)
1 for each u in $V \setminus \{s\}$
2 do $d(u) \leftarrow \infty$
3 $\pi(u) \leftarrow$ NIL
4 $d[s] \leftarrow 0$
5 $Q \leftarrow \emptyset$
6 ADD(Q, s)
7 while $Q \neq \emptyset$
8 do $u \leftarrow$ POLL(Q)
9 for each v in $\text{Adj}[u]$
10 do if $d[v] = \infty$
11 then $d[v] \leftarrow d[u] + 1$
12 $\pi[v] = u$
13 ADD(Q, v)

Analysis

- How many times is each vertex added?
 - Answer: Once. So $|V|$ for add operation
- How many times is adjacency list of vertex v scanned?
 - Answer: Once. Since $\sum_{v \in V} \text{size}(\text{Adj}[v]) = 2|E|$ (for undirected), we have $|E|$ here.
- Running time: $O(|V| + |E|)$: Linear in the input size of the graph (for adjacency list implementation)

Depth-First Search

DFS

- **Input:** Graph $G = (V, E)$
 - No source vertex here. Works for undirected and directed graphs.
 - We focus on directed graphs today...
- **Output:** Two timestamps for each node $d(v), f(v)$,
- **Output:** $\pi(v)$, predecessor of v
 - not on shortest path necessarily

Compare and Contrast

- BFS: Discovers all nodes at distance k from starting node s before discovering any node at distance $k + 1$
- DFS: As soon as we discover a vertex, we explore from it.
- Here we are after creating a different predecessor subgraph $G_\pi = (V, E_\pi)$ with $E_\pi = \{ (\pi[v], v) \mid v \in V, \pi[v] \leq \text{NIL} \}$
- Not shortest edge-path lengths
DFS Colors

In this implementation, we will use colors:
- **GREEN**: vertex is undiscovered
- **YELLOW**: vertex is discovered, but not finished
- **RED**: vertex is finished. (i.e., we have completely explored everything from this node)

Discovery and Finish Times
- Unique integers from 1 to $2|V|$ denoting when you first discover a vertex and when you are done with it
- $d[v] < f[v] \forall v \in V$

DFS (Initialize and Go)

```latex
\text{DFS}(V, E)
1 \text{ for each } u \in V
2 \text{ do color}(u) \leftarrow \text{GREEN}
3 \pi(u) \leftarrow \text{NIL}
4 \text{time} \leftarrow 0
5 \text{ for each } u \in V
6 \text{ do if color}[u] = \text{GREEN}
7 \text{ then DFS-visit}(u)
```

Example

Here I will show Java code and an example

DFS (Visit Node—Recursive)

```java
DFS-VISIT(u)
1 color(u) \leftarrow \text{YELLOW}
2 d[u] \leftarrow \text{time++}
3 \text{ for each } v \in \text{Adj}[u]
4 \text{ do if color}[v] = \text{GREEN}
5 \text{ then } \pi[v] \leftarrow u
6 \text{DFS-VISIT}(v)
7
8 color(u) \leftarrow \text{RED}
9 f[u] = \text{time++}
```
Analysis of DFS

- Loop on lines 1-3 $O(|V|)$
- DFS-VISIT is called exactly once for each vertex v (Why?)
 - Because the first thing you do is paint the node YELLOW
- The Loop on lines 3-6 in calls DFS-VISIT $|\text{Adj}[v]|$ times for vertex v.
- Since DFS visit is called exactly once per vertex, the total running time to do loop on lines 3-6 is
 \[\sum_{v \in V} |\text{Adj}[v]| = \Theta(|E|). \]
- Therefore: running time of DFS on $G = (V, E)$ is \(\Theta(|V| + |E|) \): Linear in the (adjacency list) size of the graph

Graph Review...

Think back to your thorough reading of Appendix B.4 and B.5...

- A path in G is a sequence of vertices such that each vertex is adjacent to the vertex preceding it in the sequence. Simple paths do not repeat nodes.
- A (simple) cycle is a (simple) path except that the first and last vertices are the same.
- Paths and cycles can either be directed or undirected
- If I say “cycle” or “path,” I will often mean simple, undirected cycle or path

I Can’t See the Forest Through the...

- The DFS graph: $G_\pi = (V, E_\pi)$ forms a forest of subtrees

More Definitions

- A (Undirected) acyclic graph is usually called a forest
- A DAG is a Directed, Acyclic Graph (A directed forest...)
- A subtree is simply a subgraph that is a tree

New Definitions

- A tree $T = (V, E)$ is a connected graph that does not contain a cycle
- All pairs of vertices in V are connected by a simple (undirected) path
- $|E| = |V| - 1$
- Adding any edge to E forms a cycle in T
Parenthesis Theorem

- Let’s look at the intervals: \([d[v], f[v]]\) for each vertex \(v \in V\).
 (Surely, \(d[v] < f[v]\))
- These tell us about the predecessor relationship in \(G_\pi\).

1. If I finish exploring \(u\) before first exploring \(v\), \((d[u] < f[v])\) then \(v\) is not a descendant of \(u\). (Or versa vice)
2. If \([d[u], f[u]] \subset [d[v], f[v]]\) then \(u\) is a descendent of \(v\) in the DFS tree
3. If \([d[v], f[v]] \subset [d[u], f[u]]\) then \(v\) is a descendent of \(u\) in the DFS tree

Classifying Edges in the DFS Tree

Given a DFS Tree \(G_\pi\), there are four type of edges \((u, v)\)

- **Tree Edges**: Edges in \(E_\pi\). These are found by exploring \((u, v)\) in the DFS procedure
- **Back Edges**: Connect \(u\) to an ancestor \(v\) in a DFS tree
- **Forward Edges**: Connect \(u\) to a descendent \(v\) in a DFS tree
- **Cross Edges**: All other edges. They can be edges in the same DFS tree, or can cross trees in the DFS forest \(G_\pi\)

Modifying DFS to Classify Edges

- DFS can be modified to classify edges as it encounters them...
- Classify \(e = (u, v)\) based on the **color** of \(v\) when \(e\) is first explored...
 - **GREEN**: Indicates Tree Edge
 - **YELLOW**: Indicates Back Edge
 - **RED**: Indicates Forward or Cross Edge

DFS Undirected Graphs

- In an undirected graph, there may be some ambiguity, as \((u, v)\) and \((v, u)\) are the same edge. The following theorem will help clear things up

Thm

In a DFS of an undirected graph \(G = (V, E)\), every edge is a tree edge or a back edge.
Next Time

- Graphs, Graphs, and more Graphs.
- Additional Hmwk: Problems: 22.2-5, 22.2-6, 22.3-8, 22.4-3