Sums

Arithmetic Series

\[1 + 2 + \cdots + n = \sum_{k=1}^{n} k = \frac{n(n+1)}{2} \]

Sum Of Squares

\[\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \]

- Often, such formulae can be proved via mathematical induction.

Induction

A way to prove that every statement in a (countably) infinite sequence of statements is true.

How to do Induction

1. Prove that the first statement in the infinite sequence of statements is true: The base case.
2. Prove that if any one statement in the infinite sequence of statements is true, then so is the next one: The induction.

More Sums

Geometric Series

\[\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x} \]

If \(|x| < 1\), then the series converges to

\[\sum_{k=0}^{\infty} x^k = \frac{1}{1 - x} \]

Harmonic Series

\[H_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{k} = \sum_{k=1}^{n} \frac{1}{k} \approx \ln(n) \]
Bounding Sums By Integrals

- When f is a (monotonically) increasing function, then we can approximate the sum $\sum_{k=m}^{n} f(k)$ by the integrals:
 \[\int_{m-1}^{n} f(x) \, dx \leq \sum_{k=m}^{n} f(k) \leq \int_{m}^{n+1} f(x) \, dx. \]

 and a decreasing function can be approximated by
 \[\int_{m}^{n+1} f(x) \, dx \leq \sum_{k=m}^{n} f(k) \leq \int_{m-1}^{n} f(x) \, dx. \]

- For example, the harmonic series ($\sum_{k=1}^{n} k^{-1}$).
 \[\int_{1}^{n+1} x^{-1} \, dx \leq \sum_{k=1}^{n} k^{-1} \leq \int_{0}^{n} x^{-1} \, dx \]
 \[\ln(n + 1) \leq \sum_{k=1}^{n} k^{-1} \leq \ln(n) + 1 \]

You're On Your Own

- Be sure to read and understand the sections on bounding summations and splitting summations (Appendix A.2)
- Be sure to read sections on relations, functions, graphs (B.2, B.3, and B.4)
- This course is fairly mathematical, so you need to know this stuff. :-(
- I will try and (re)-introduce the mathematics we need as we go, but if you are ever confused by my jibberish and jargon in class, please feel free to stop me and ask a question.

The Joy of Sets

- You are also responsible for knowing the definitions and notation of sets given in Appendix B
- \emptyset: Empty Set
- \mathbb{Z}: The set of integers: $\{-2, -1, 0, 1, 2\}$
- \mathbb{R}: The set of real numbers
- \mathbb{R}_+: The set of non-nonnegative real numbers: $\{x \in \mathbb{R} \mid x \geq 0\}$
- $A \subseteq B \Rightarrow x \in A \Rightarrow x \in B$
- $A \nsubseteq B \Rightarrow \exists x \in A$ such that $x \notin B$
- $|A|$ denotes the cardinality, or number of elements, of the set A.
 - Note that $|A|$ is not finite for all sets

A ∩ B = $\{x \mid x \in A \text{ and } x \in B\}$
A ∪ B = $\{x \mid x \in A \text{ or } x \in B\}$
A \ B = $\{x \mid x \in A \text{ and } x \notin B\}$

For any two sets A and B, we have the identity
\[|A \cup B| = |A| + |B| - |A \cap B|. \]
This is a specialization of the general principle of inclusion and exclusion.
Some Notational Conventions for Today

- Unless otherwise specified, we will assume all functions map \(\mathbb{N} \) to \(\mathbb{R}_+ \).
- The symbols \(f, g, \) and \(T \) will typically denote such functions.
- The variable \(n \) will typically be used to denote the input size for an algorithm.
- We will use \(a, b, \) and \(c \) to denote constants.
- In an abuse of notation, I may refer to \(f(n) \) as a function, but in reality it is simply a value.
 - Correct: “\(f \) is a polynomial function.”
 - Incorrect: “\(f(n) \) is a polynomial function.”

Growth of Functions

Question
Why are we really interested in the theoretical running times of algorithms?

Answers
1. To get to the other side
2. To get a reasonable grade in this course
3. To compare different algorithms for solving the same problem.

We are interested in performance for large input sizes.
For this purpose, we need only compare the asymptotic growth rates of the running times.

Comparing Algorithms

- Consider algorithm \(A \) with running time given by \(f \) and algorithm \(B \) with running time given by \(g \).
- We are interested in knowing
 \[L = \lim_{n \to \infty} \frac{f(n)}{g(n)} \]
- What are the four possibilities?
 - \(L = 0 \): \(g \) grows faster than \(f \)
 - \(L = \infty \): \(f \) grows faster than \(g \)
 - \(L = c \): \(f \) and \(g \) grow at the same rate.
 - The limit doesn’t exist.

\(\Theta \) Notation

- We now define the set
 \[\Theta(g) = \{ f : \exists c_1, c_2, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n) \forall n \geq n_0 \} \] (1)
- If \(f \in \Theta(g) \), then we say that \(f \) and \(g \) grow at the same rate or that they are of the same order.
- Note that
 \[f \in \Theta(g) \iff g \in \Theta(f) \]
- We also know that if
 \[\lim_{n \to \infty} \frac{f(n)}{g(n)} = c \]
 for some constant \(c \), then \(f \in \Theta(g) \).
Big-O Notation

- We now define the set of functions

 \[O(g) = \{ f : \exists c, n_0 > 0 \text{ such that } 0 \leq f(n) \leq cg(n) \forall n \geq n_0 \} \]

- If \(f \in O(g) \), then we say that \(f \) is big-O of \(g \) or that \(g \) grows at least as fast as \(f \).

- Some other facts and notation:
 - \(f \in \Omega(g) \iff g \in O(f) \)
 - \(f \in o(g) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \)
 - \(f \in \omega(g) \iff g \in o(f) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \)

- Note that \(f \in o(g) \Rightarrow f \in O(g) \setminus \Theta(g) \).

Comparing Functions

- The notation we have just defined gives us a way of ordering functions.
- We can can interpret:
 - \(f \in O(g) \) as \(“f \leq g,” \)
 - \(f \in \Omega(g) \) as \(“f \geq g,” \)
 - \(f \in o(g) \) as \(“f < g,” \)
 - \(f \in \omega(g) \) as \(“f > g,” \) and
 - \(f \in \Theta(g) \) as \(“f = g.” \)

- This gives us a method for comparing algorithms based on their running times.
- Note that most of the relational properties of real numbers (transitivity, reflexivity, symmetry) work here also.

Commonly Occurring Functions

Polynomials

- \(f(n) = \sum_{i=0}^{k} a_i n^i \) is a polynomial of degree \(k \).
- Polynomials \(f \) of degree \(k \) are in \(\Theta(n^k) \).

Exponentials

- A function in which \(n \) appears as an exponent on a constant is an exponential function, i.e., \(2^n \).
- For all positive constants \(a \) and \(b \), \(\lim_{n \to \infty} \frac{n^a}{b^n} = 0 \).
- This means that exponential functions always grow faster than polynomials.

Logarithms

- Logarithms of different bases differ only by a constant multiple, so they all grow at the same rate.
- A polylogarithmic function is a function in \(O(lg^k) \).
- Polylogarithmic functions always grow more slowly than polynomials.

Factorials

- \(n! = n(n-1)(n-2) \cdots 1 \)
- \(n! = o(n^n) \)
- \(n! = \omega(2^n) \)
- \(\lg(n!) = \Theta(n \lg n) \)
Logs

- \(a^n a^m = a^{n+m}\)
- We use the notation
 - \(\log n = \log_2 n\)
 - \(\ln n = \log_e n\)
 - \(\lg k n = (\lg n)^k\)
- Changing the base of a logarithm changes its value by a constant factor

Log Rules

- \(a = b^{\log_b a}\)
- \(\log (\prod_{k=1}^{n} a_k) = \sum_{k=1}^{n} \log a_k\)
- \(\log_b a^n = n \log_b a\)
- \(\log_b a = (\log_c a) / (\log_c b)\)
- \(\log_b a = 1 / (\log_a b)\)
- \(a^{\log_b n} = n^{\log_b a}\)

Problem Difficulty

- The **difficulty** of a problem can be judged by the (worst-case) running time of the best-known algorithm.
- Problems for which there is an algorithm with polynomial running time (or better) are called **polynomially solvable**.
- Generally, these problems are considered to be **easy**.
 - Formally, they are in the complexity class \(P\)
- There are many interesting problems for which it is not known if there is a polynomial-time algorithm.
- These problems are generally considered **difficult**.
 - This is known as the complexity class \(NP\).

A+++++++++++++++++++++++

- You will get a very good grade in this class if you prove \(P = NP\)
- It is open of the great open questions in mathematics: Are these truly difficult problems, or have we not yet discovered the right algorithm?
- If you answer this question, you can win a million dollars: http://www.claymath.org/millennium/P_vs_NP/
- Most important, you can get the jokes from the Simpsons: www.mathsci.appstate.edu/~sjg/simpsonsmath/
- In this course, we will stick mostly to the easy problems, for which a polynomial time algorithm is known.

Next Time

- A short amount of time to address homework questions
- Recurrences and the Master Method