Taking Stock

Last Time

- Single-Source Shortest Paths

This Time

- All-Pairs Shortest Paths

All-Pairs Shortest Paths

- Given directed graph $G = (V, E)$, $w : E \to \mathbb{R}^{|E|}$. (To ease notation, we let $V = \{1, 2, \ldots, n\}$.)
- Goal: Create an $n \times n$ matrix of shortest path distances $\delta(i, j)$
- We could run Bellman-Ford if negative weights edges
 - Running Time: $O(|V|^2|E|)$.
- We could run Dijkstra if no negative weight edges
 - Running Time: $O(|V|^3 \log |V|)$ (with binary heap implementation)
- We'll see how to do slightly better, by exploiting an analogy to matrix multiplication

New Graph Data Structure

- This is maybe the one and only time we are going to use an adjacency matrix graph representation.
- Given $G = (V, E)$ and weight function $w : E \to \mathbb{R}^{|E|}$, create $|V| \times |V|$ matrix W as

$$w_{ij} = \begin{cases} 0 & i = j \\ w(i, j) & (i, j) \in E \\ \infty & (i, j) \notin E \end{cases}$$

- In this case it is useful to consider having 0 weight “loops” on the nodes ($w_{ii} = 0$)
- The output of an all pairs shortest path algorithm is a matrix $D = (d)_{ij}$, where $d_{ij} = \delta(i, j)$
Dynamic Programming: Attempt #1

- Subpaths of shortest paths are shortest paths
- Let $\ell_{ij}^{(m)}$ be the shortest path from $i \in V$ to $j \in V$ that uses $\leq m$ edges
- To initialize

 $\ell_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{if } i \neq j \end{cases}$

- What is the recursion we are looking for?

 $\ell_{ij}^{(m)} = \min \left(\ell_{ij}^{(n-1)}, \min_{1 \leq k \leq n} (\ell_{ik}^{(m-1)} + w_{kj}) \right)$

 (Since $w_{jj} = 0$)

More Facts About Our DP

- Note that $m = 1 \Rightarrow \ell_{ij}^{(1)} = w_{ij}$
- All simple shortest paths contain $\leq n - 1$ edges, so simply compute $\ell_{ij}^{n-1} = \delta(i, j)$
- We will keep a “label-matrix” $L^{(m)}$ which in the end will be $L^{(n-1)} = D$
- Initialize with $L^{(1)} = W$ by definition

Incrementing m

EXTEND(L, W)

1. create $(n \times n)$ matrix L'
2. for $i \leftarrow 1$ to n
3. do for $j \leftarrow 1$ to n
4. do $\ell_{ij}' \leftarrow \infty$
5. for $k \leftarrow 1$ to n
6. do $\ell_{ij}' \leftarrow \min(\ell_{ij}', \ell_{ik} + w_{kj})$

APSP$1(W)$

1. $L^{(1)} = W$
2. for $m \leftarrow 2$ to $n - 1$
3. do $L^{(m)} = \text{EXTEND}(L^{(m-1)}, W)$
4. return $L^{(n-1)}$

Let’s Compare

EXTEND(L, W)

1. create $(n \times n)$ matrix L'
2. for $i \leftarrow 1$ to n
3. do for $j \leftarrow 1$ to n
4. do $\ell_{ij}' \leftarrow \infty$
5. for $k \leftarrow 1$ to n
6. do $\ell_{ij}' \leftarrow \min(\ell_{ij}', \ell_{ik} + w_{kj})$

MATRIXMUltiPLY(A, B)

1. create $(n \times n)$ matrix C
2. for $i \leftarrow 1$ to n
3. do for $j \leftarrow 1$ to n
4. do $c_{ij} \leftarrow 0$
5. for $k \leftarrow 1$ to n
6. do $c_{ij} \leftarrow c_{ij} + a_{ik}b_{kj}$
7
Observation!

Who Cares!?!?

- So what if `Extend` looks like `Matrix Multiply`?

Key Insight

We Only Care about computing $L^{(n-1)}$

- Suppose we wanted to compute the matrix $AAAAAAAA = A^8$
- Long way: 7 matrix multiplies
- Short Way: 3 matrix multiplies
 - $A, A^2, A^4 = A^2 A^2, A^8 = A^4 A^4$

Faster All-Pairs-Shortest-Paths

Floyd-Warshall Algorithm

- Again, a DP approach, but uses a different label definition.
- **Def:** For a path (v_1, v_2, \ldots, v_k), an **intermediate vertex** is any vertex of p other than v_1 and v_k.
- **Floyd-Warshall Labels:** Let $d_{ij}^{(k)}$ be the shortest path from i to j such that all intermediate vertices are in the set $\{1, 2, \ldots, k\}$.

Observations

<table>
<thead>
<tr>
<th>Extend</th>
<th>MatrixMultiply</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>A</td>
</tr>
<tr>
<td>W</td>
<td>B</td>
</tr>
<tr>
<td>L'</td>
<td>C</td>
</tr>
<tr>
<td>min</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>\times</td>
</tr>
<tr>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>

Faster All-Pairs-Shortest-Paths

Floyd-Warshall Algorithm

1. $L^{(1)} = W$
2. $m \leftarrow 1$
3. while $m \leq n - 1$
4. do $L^{(2m)} = \text{Extend}(L^m, L^m)$
5. $m \leftarrow 2m$
6. return L^m

- OK to “overshoot” $n - 1$, since shortest path labels don’t change after $m = n - 1$ (since no negative cycles)
- “Repeated squaring” is a technique used to improve the efficiency of lots of other algorithms
- **Analysis:**
Another DP Recursion

- Consider a shortest path \(P \) from \(i \) to \(j \) such that all intermediate vertices are in \(\{1, 2, \ldots, k\} \).

There are two cases

1. \(k \) is not an intermediate vertex. Then all intermediate vertices of \(P \) are in \(\{1, 2, \ldots, k - 1\} \).
2. \(k \) is an intermediate vertex. Then for the paths \(P_{ik} \) and \(P_{kj} \), all intermediate vertices are in \(\{1, 2, \ldots, k - 1\} \).

Building the Algorithm

- This simple observation, immediately suggests a DP recursion

\[
d^{(k)}_{ij} = \begin{cases}
 w_{ij} & k = 0 \\
 \min(d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj}) & k \geq 1
\end{cases}
\]

- We look for \(D^{(n)} = (d^{(n)}_{ij}) \)

Floyd-Warshall (\(W \))

1. \(D^{(0)} = W \)
2. for \(k \leftarrow 1 \) to \(n \)
3. do for \(i \leftarrow 1 \) to \(n \)
4. \hspace{1em} do for \(j \leftarrow 1 \) to \(n \)
5. \hspace{2em} do \(d^{(k)}_{ij} \leftarrow \min(d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj}) \)
6. return \(D^{(n)} \)

- You don’t really need the superscripts (25.2.4)

Transitive Closure

- Given directed graph \(G = (V, E) \).
- Compute graph \(TC(G) = (V, E^*) \) such that \(e = (i, j) \in E^* \iff \exists \text{ path from } i \text{ to } j \text{ in } G \)

- Transitive closure can be thought of as establishing a data structure that makes it possible to solve reachability questions (can I get to \(x \) from \(y \)?) efficiently. After the preprocessing of constructing the transitive closure, all reachability queries can be answered in constant time by simply reporting a matrix entry.

- Transitive closure is fundamental in propagating the consequences of modified attributes of a graph \(G \).

Applications of Transitive Closure

- Consider the graph underlying any spreadsheet model, where the vertices are cells and there is an edge from cell \(i \) to cell \(j \) if the result of cell \(j \) depends on cell \(i \). When the value of a given cell is modified, the values of all reachable cells must also be updated. The identity of these cells is revealed by the transitive closure of \(G \).
- Many database problems reduce to computing transitive closures, for analogous reasons.
- Doing it fast is important
Transitive Closure Algorithms

1. Perform BFS or DFS from each vertex and keep track of the vertices encountered: $O(V(V + E))$. (Good for sparse graphs)

2. Find Strongly Connected Components. (All vertices in each component are mutually reachable). Do BFS or DFS on component graph. (In which component A is connected to component B if there exists an edge from a vertex in A to a vertex in B)

3. You can use Warshall’s Algorithm with weights 1. (In fact you can use “bits” and make things very efficient as well)

Next Time

- Flows in Networks
- Continuation of TSP lab
- Quiz: April 4
- Programming Quiz: April 23