Transitive Closure

- Given directed graph $G = (V, E)$.
- Compute graph $TC(G) = (V, E^*)$ such that $e = (i, j) \in E^* \iff \exists \text{ path from } i \text{ to } j \text{ in } G$.

- Transitive closure can be thought of as establishing a data structure that makes it possible to solve reachability questions (can I get to x from y?) efficiently. After the preprocessing of constructing the transitive closure, all reachability queries can be answered in constant time by simply reporting a matrix entry.
- Transitive closure is fundamental in propagating the consequences of modified attributes of a graph G.

Applications of Transitive Closure

- Consider the graph underlying any spreadsheet model, where the vertices are cells and there is an edge from cell i to cell j if the result of cell j depends on cell i. When the value of a given cell is modified, the values of all reachable cells must also be updated. The identity of these cells is revealed by the transitive closure of G.
- Many database problems reduce to computing transitive closures, for analogous reasons.
- Doing it fast is important.
Transitive Closure Algorithms

- Perform BFS or DFS from each vertex and keep track of the vertices encountered: \(O(V(V + E))\). (Good for sparse graphs)
- Find Strongly Connected Components. (All vertices in each component are mutually reachable). Do BFS or DFS on component graph. (In which component \(A\) is connected to component \(B\) if there exists an edge from a vertex in \(A\) to a vertex in \(B\))
- You can use Warshall’s Algorithm with weights 1. (In fact you can use “bits” and make things very efficient as well)

Flows in Networks

- \(G = (V, E)\) directed.
- Each edge \((u, v)\) \(\in E\) has a capacity \(c(u, v) \geq 0\)
- If \((u, b) \notin E\) \(\Rightarrow c(u, v) = 0\)
- We will typically have a special source vertex \(s \in V\), a sink vertex \(t \in V\), and we will assume there exists paths from \(s \Rightarrow v \Rightarrow t\) \(\forall v \in V\)

Flows

- A positive flow is a function \(p : V \times V \rightarrow \mathbb{R}^{|V| \times |V|}\) that satisfies two conditions:
 - Capacity Constraints: \(0 \leq p(u, v) \leq c(u, v)\) \(\forall u \in V, v \in V\)
 - Flow Conservation: \(\sum_{v \in V} p(v, u) = \sum_{v \in V} p(u, v)\) \(\forall u \in V \setminus \{s, t\}\)

- We will assume that a positive flow either goes from \(u\) to \(v\) or from \(v\) to \(u\) but not both.
- If not, we can “cancel” the flow, and preserve the conditions

Net Flows

- A net flow is a function \(f : V \times V \rightarrow \mathbb{R}^{|V| \times |V|}\) that satisfies three conditions:
 - Capacity Constraints: \(0 \leq f(u, v) \leq c(u, v)\)
 - Skew Symmetry: \(f(u, v) = -f(v, u)\) \(\forall u \in V, v \in V\)
 - Flow Conservation: \(\sum_{v \in V} f(u, v) = 0\) \(\forall u \in V \setminus \{s, t\}\)

Another way to think of flow conservation:
\[
\sum_{v \in V \mid f(v, u) > 0} f(v, u) = \sum_{v \in V \mid f(u, v) > 0} f(u, v)
\]
Different Yet Same

- There are two differences between positive flow p and net flow f
 1. $p(u, v) \geq 0$ (while not true for f)
 2. f satisfies the skew symmetric condition
- However the functions are really equivalent. Given p, define f as
 \[f(u, v) = p(u, v) - p(v, u) \]
 This satisfies flow conservation and capacity constraints
- Given f define p as
 \[
p(u, v) = \begin{cases} f(u, v) & \text{if } f(u, v) > 0 \\ 0 & \text{if } f(u, v) \leq 0 \end{cases}
\]

More Flow

- So from here on out, we will use net flow instead of positive flow.
- An important value we will be worried about is the value of flow $f = |f| = \sum_{v \in V} f(s, v)$: The total flow out of the source.

The Maximum Flow Problem

Given $G = (V, E)$. source node $s \in V$, sink node $t \in V$, edge capacities c. Find a flow whose value is maximum.

Σ’s Scare Me!

- We’ll introduce a shorthand notation for summing between sets of vertices.
- Given $X \subseteq V$, $Y \subseteq V$
 \[f(X, Y) = \sum_{x \in X} \sum_{y \in Y} f(x, y). \]
- Therefore flow conservation is
 \[f(\{u\}, V) = 0 \quad \forall u \in V \setminus \{s, t\}. \]

Lemma, Lemma, Lemma

- With this shorthand notation, writing down useful flow properties is easy. Can you prove the following?
 1. $f(X, X) = 0 \quad \forall X \subseteq V$
 2. $f(X, Y) = -f(Y, X) \quad \forall X, Y \subseteq V$
 3. Let $X, Y, Z \subset V$ be such that $X \cap Y = \emptyset$, then
 \[
f(X \cup Y, Z) = f(X, Z) + f(Y, Z)
 \]
 4. $|f| = f(V, t)$
Cuts

- A cut of a (flow) network \(G = (V, E) \) is a partition of \(V \) into \(S \) and \(T = V \setminus S \) such that \(s \in S \) and \(t \in T \).
- For flow \(f \), net flow across a cut is \(f(S,T) \) and the cut capacity is \(c(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v) \).
- A minimum cut of \(G \) is a cut whose capacity is minimum.

Example...

A Simple Upper Bound

- For any cut \((S,T) \), \(f(S,T) = \| f \| \)

Proof

\[
 f(S,T) = f(S,V) - f(S,S) \quad \text{Since} \quad S \cup T = V, S \cap T = \emptyset \\
 = f(S,V) \\
 = f(\{s\}, V) + f(S \setminus \{s\}, V) \quad \text{flow conservation} \\
 = f(\{s\}, V) \\
 = \| f \|
\]

Corollary :-)

The value of any flow is no more than the capacity of any cut.

\[
\| f \| = f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) \leq \sum_{u \in S} \sum_{v \in T} c(u,v) = c(S,T).
\]

Residual Network

- Given a flow \(f \) in a network \(G = (V, E) \), we ask ourselves the question: How much more flow can I push from \(u \in V \) to \(v \in V \)?
- The answer is simple: The residual capacity of the arc \((u,v) \):
 \[
 c_f(u,v) \overset{\text{def}}{=} c(u,v) - f(u,v) \geq 0.
 \]
- Give flow \(f \), we can create a residual network from the flow. \(G_f = (V, E_f) \), with
 \[
 E_f \overset{\text{def}}{=} \{(u,v) \in V \times V \mid c_f(u,v) > 0\},
 \]
 so that each edge in the residual network can admit a positive flow.

Augmenting Flow Lemma

- We define the flow sum of two flows \(f_1, f_2 \) as the sum of the individual flows
 \[
 (f_1 + f_2)(u,v) = f_1(u,v) + f_2(u,v).
 \]
- Note that \(f_1 + f_2 \) is also a flow function
- Moreover, we have the following:

 Augmenting Flow Lemma

Given a flow network \(G \), a flow \(f \) in \(G \). Let \(f' \) be any flow in the residual network \(G_f \). Then the flow sum \(f + f' \) is a flow in \(G \) with value \(|f| + |f'| \).
Augmenting Paths

- Consider a path P_{st} from s to t in G_f.
- According to the lemma, we can increase the flow in G by increasing the flow along in edge in P_{st}.
- (Think of it as a sequence of pipes along which we can quirt more flow from s to t)
- How much more?

$$c_f(P_{st}) = \min\{c_f(u, v) \mid (u, v) \text{ is on path } P_{st}\}.$$

Augmenting flow: Let P be an augmenting path in G_f, define $f_P : V \times V \to \mathbb{R}^{|V| \times |V|}$:

$$f_P(u, v) = \begin{cases}
 c_f(p) & \text{if } (u, v) \text{ on } P \\
 -c_f(p) & \text{if } (v, u) \text{ on } P \\
 0 & \text{otherwise}
\end{cases}$$

then f_P is a flow in G_f with value $|f_P| = c_f(P) > 0$.

- corollary: $f' = f + f_P$ is a flow in G with value $|f'| = |f| + c_f(P) > |f|$.

The Big Kahuna

Max-Flow Min-Cut Theorem

The following statements are equivalent:

- f is a maximum flow
- f admits no augmenting path. (No (s, t) path in residual network)
- $|f| = c(S, T)$ for some cut (S, T)

Proof of MFMC

- $(1) \Rightarrow (2)$. By contradiction. If f has an augmenting path, then the flow can’t have been maximum (by previous corollary).
- $(2) \Rightarrow (3)$. Let

$$S = \{v \in V \mid \exists \text{ path from } s \text{ to } v \text{ in } G_f\}.$$
$$T = V \setminus S.$$

Note that $t \in T$ or else there was an augmenting path, so (S, T) is a cut. For each $u \in S, v \in T$, $f(u, v) = c(u, v)$ or otherwise $(u, v) \in E_f$ and we should have put $v \in S$. Therefore $|f| = f(S, T) = c(S, T)$ for the chosen cut (S, T).
- $(3) \Rightarrow (1)$. Since $|f| \leq c(S, T)$ (always), the fact that $|f| = c(S, T)$ for the chosen cut implies that f must be a maximum flow.
Ford-Fulkerson Algorithm

- This gave Lester Ford and Del Fulkerson an idea to find the maximum flow in a network:

\[\text{FORD-FULKERSON}(V, E, c, s, t) \]
1. \(\text{for } i \leftarrow 1 \text{ to } n \)
2. \(\text{do } f[u, v] \leftarrow f[v, u] \leftarrow 0 \)
3. \(\text{while } \exists \text{ augmenting path } P \text{ in } G_f \)
4. \(\text{do augment } f \text{ by } c_f(P) \)

- Assume all capacities are integers. If they are rational numbers, scale them to be integers.

Analysis

- If the maximum flow is \(|f^*| \), then (since the augmenting path must raise the flow by at least 1 on each iteration), we will require \(\leq |f^*| \) iterations.
- Augmenting the flow takes \(O(|E|) \)
- \(\text{FORD-FULKERSON} \) runs in \(O(|f^*||E|) \)
- This is not polynomial in the size of the input.

Can We Do Better!?

- Two Smart Guys had the following idea.
- Instead of augmenting on an arbitrary augmenting path, why don’t we augment flow along the shortest augmenting path.
- Here shortest means simply number of edges taken, so all edges have weight 1.
- Therefore shortest paths can be found just like you did in lab – with BFS.
- With some heavy machinery (See book), one can show that if you only augment on shortest paths, then you have to do at most \(O(|V||E|) \) augmentations of the flow.
- Therefore Edmonds-Karp algorithm runs in \(O(|V||E|^2) \) time.
- There are even faster algorithms, such as push-relabel, but we won’t cover those.

This/Next Time

- Continuation of TSP lab.
- Will give you some “test graphs”.
- Will also give you a bit more homework (on max flows)
- \textbf{No Late Homework Accepted}
- \textbf{Quiz: April 4}
- \textbf{Programming Quiz: April 23}