Taking Stock

Stuff We Learned

- Dynamic Programming (15.[1,3])
- Greedy Algorithms (16.[1,2])
- Graphs and Search (22.*)
- Spanning Trees (23.*)
- (Single Source) Shortest Paths (24.[1,2,3])
- (All Pairs) Shortest Paths (25.[1,2])
- Max Flow (26.[1,2,3])

Dynamic Programming

Dynamic Programming in a Nutshell

- Characterize the structure of an optimal solution
- Recursively define the value of an optimal solution
- Compute the value of an optimal solution “from the bottom up”
- Construct optimal solution (if required)

Examples

- Assembly Line Balancing
- Lot Sizing
Assembly Line Balancing

- Let \(f_i(j) \) be the fastest time to get through \(S_{ij} \) \(\forall i = 1, 2, \forall j = 1, 2, \ldots, n \)

\[
 f^* = \min(f_1(n) + x_1, f_2(n) + x_2) \\
 f_1(1) = e_1 + a_{11} \\
 f_2(1) = e_2 + a_{21} \\
 f_1(j) = \min(f_1(j - 1) + a_{1j}, f_2(j - 1) + t_{2,j-1} + a_{1j}) \\
 f_2(j) = \min(f_2(j - 1) + a_{2j}, f_1(j - 1) + t_{1,j-1} + a_{2j})
\]

Lot Sizing

- Let \(f_t(s) \): be the minimum cost of meeting demands from \(t, t + 1, \ldots, T \) (\(t \) until the end) if \(s \) units are in inventory at the beginning of period \(t \)

\[
 f_t(s) = \min_{x \in 0, 1, 2, \ldots} \{ c_t(x) + h_t(s + x - d_t) + f_{t+1}(s + x - d_t) \}.
\]

- \(c_{ij} \) be the size of a maximum-sized subset of mutually compatible jobs in \(S_{ij} \).
- If \(S_{ij} = \emptyset \), then \(c_{ij} = 0 \)
- If \(S_{ij} \neq \emptyset \), then \(c_{ij} = c_{ik} + 1 + c_{kj} \) for some \(k \in S_{ij} \). We pick the \(k \in S_{ij} \) that maximizes the number of jobs:

\[
 c_{ij} = \begin{cases}
 0 & \text{if } S_{ij} = \emptyset \\
 \max_{k \in S_{ij}} c_{ik} + c_{kj} + 1 & \text{if } S_{ij} \neq \emptyset
 \end{cases}
\]

- Note we need only check \(i < k < j \)

To Solve \(S_{ij} \)

1. Choose \(m \in S_{ij} \) with the earliest finish time. The Greedy Choice
2. Then solve problem on jobs \(S_{mj} \)

Greedy

- Greedy is not always optimal!
- But it sometimes works:

Activity Selection

- Let \(S_{ij} \subseteq A \) be the set of activities that start after activity \(i \) needs to finish and before activity \(j \) needs to start:

\[
 S_{ij} \overset{\text{def}}{=} \{ k \in S \mid f_i \leq s_k, f_k \leq s_j \}
\]

- Let’s assume that we have sorted the activities such that

\[
 f_1 \leq f_2 \leq \cdots \leq f_n
\]

- Schedule jobs in \(S_{0,n+1} \)

Graphs!

- Adjacency List, Adjacency Matrix
- Breadth First Search
- Depth First Search

BFS

- Input: Graph \(G = (V, E) \), source node \(s \in V \)
- Output: \(d(v) \), distance (smallest # of edges) from \(s \) to \(v \) \(\forall v \in V \)
- Output: \(\pi(v) \), predecessor of \(v \) on the shortest path from \(s \) to \(v \)
BFS

BFS(V, E, s)

1. for each u in $V \setminus \{s\}$
2. do $d(u) \leftarrow \infty$
3. $\pi(u) \leftarrow$ NIL
4. $d[s] \leftarrow 0$
5. $Q \leftarrow \emptyset$
6. add(Q, s)
7. while $Q \neq \emptyset$
8. do $u \leftarrow$ poll(Q)
9. for each v in $\text{Adj}[u]$
10. do if $d[v] = \infty$
11. then $d[v] \leftarrow d[u] + 1$
12. $\pi[v] = u$
13. add(Q, v)

DFS

DFS

- **Input:** Graph $G = (V, E)$
- **Output:** Two timestamps for each node $d(v), f(v)$,
- **Output:** $\pi(v)$, predecessor of v
- not on shortest path necessarily

DFS(V, E)

1. for each u in V
2. do $\text{color}(u) \leftarrow \text{GREEN}$
3. $\pi(u) \leftarrow$ NIL
4. $\text{time} \leftarrow 0$
5. for each u in V
6. do if $\text{color}[u] = \text{GREEN}$
7. then DFS-Visit(u)

DFS (Visit Node—Recursive)

DFS-Visit(u)

1. $\text{color}(u) \leftarrow \text{YELLOW}$
2. $d[u] \leftarrow \text{time}++$
3. for each v in $\text{Adj}[u]$
4. do if $\text{color}[v] = \text{GREEN}$
5. then $\pi[v] \leftarrow u$
6. DFS-Visit(v)
7. $\text{color}(u) \leftarrow \text{RED}$
8. $f[u] = \text{time}++$

Classifying Edges in the DFS Tree

Given a DFS Tree G_π, there are four types of edges (u, v)

- **Tree Edges:** Edges in E_π. These are found by exploring (u, v) in the DFS procedure
- **Back Edges:** Connect u to an ancestor v in a DFS tree
- **Forward Edges:** Connect u to a descendent v in a DFS tree
- **Cross Edges:** All other edges. They can be edges in the same DFS tree, or can cross trees in the DFS forest G_π
Modifying DFS to Classify Edges

- DFS can be modified to classify edges as it encounters them...
- Classify $e = (u, v)$ based on the color of v when e is first explored...
- GREEN: Indicates Tree Edge
- YELLOW: Indicates Back Edge
- RED: Indicates Forward or Cross Edge

Stuff You Can Do with DFS

Topological Sort: The Whole Algorithm
1. DFS search the graph
2. List vertices in order of decreasing finishing time

Strongly Connected Components
1. Call DFS(G) to topologically sort G
2. Compute G^T
3. Call DFS(G^T) but consider vertices in topologically sorted order (from G)
4. Vertices in each tree of depth-first forest for SCC

Spanning Tree

Kruskal’s Algorithm

KRUSKAL(V, E, w)
1. $A \leftarrow \emptyset$
2. for each v in V
3. do MAKE-SET(v)
4. SORT(E, w)
5. for each (u, v) in (sorted) E
6. do if FIND-SET(u) \neq FIND-SET(v)
7. then $A \leftarrow A \cup \{(u, v)\}$
8. UNION(u, v) return A

Prim’s Algorithm

- Builds one tree, so A is always a tree
- Let V_A be the set of vertices on which A is incident
- Start from an arbitrary root r
- At each step find a light edge crossing the cut $(V_A, V \setminus V_A)$
Pseudocode for Prim

Prim(*V*, *E*, *w*, *r*)
1.
2. for each \(u \in V \)
3. do
4. key[\(u \)] ← \(\infty \)
5. \(\pi[\(u \)] \leftarrow \text{NIL.Insert}(Q, u) \)
6. key[\(r \)] = 0
7. while \(Q \neq \emptyset \)
8. do \(u \leftarrow \text{Extract-Min}(Q) \)
9. for each \(v \in \text{Adj}[\(u \)] \)
10. do if \(v \in Q \) and \(w_{uv} < \text{key}[\(v \)] \)
11. then \(\pi[\(v \)] \leftarrow \(u \) \)
12. key[\(v \)] = \(w_{uv} \)

Shortest Paths

- (Single Source) shortest-path algorithms produce a label: \(d[\(v \)] = \delta(s, v) \).
- Initially \(d[\(v \)] = \infty \), reduces as the algorithm goes, so always \(d[\(v \)] \geq \delta(s, v) \).
- Also produce labels \(\pi[\(v \)] \), predecessor of \(v \) on a shortest path from \(s \).

Relax!

- The algorithms work by improving (lowering) the shortest path estimate \(d[\(v \)] \).
- This operation is called **relaxing** an edge \((u, v)\).
- Can we **improve** the shortest-path estimate for \(v \) by going through \(u \) and taking \((u, v)\)?

Relax(*u*, *v*, *w*)
1. if \(d[\(v \)] > d[\(u \)] + w_{uv} \)
2. then \(d[\(v \)] \leftarrow d[\(u \)] + w_{uv} \)
3. \(\pi[\(v \)] \leftarrow \(u \) \)

Lemma, Lemma, Lemma

Path Relaxation Property

Let \(P = \{v_0, v_1, \ldots, v_k\} \) be a shortest path from \(s = v_0 \) to \(v_k \). If the edges \((v_0, v_1), (v_1, v_2), (v_{k-1}, v_k)\) are relaxed in that order, (there can be other relaxations in-between), then \(d[\(v_k \)] = \delta(s, v_k) \).
Bellman-Ford Algorithm

- Works with Negative-Weight Edges
- Returns \texttt{true} if there are no negative-weight cycles reachable from \(s \), \texttt{false} otherwise

\texttt{Bellman-Ford(V, E, w, s)}

1. \texttt{Init-Single-Source(V, s)}
2. for \(i \leftarrow 1 \) to \(|V| - 1\)
 3. do for each \((u, v)\) in \(E \)
 4. do \texttt{Relax}(u, v, w)
 5. for each \((u, v)\) in \(E \)
 6. do if \(d[v] > d[u] + w_{uv} \)
 7. then return \texttt{False}
9. return \texttt{True}

SSSP Dijkstra

DAG-Shortest-Paths (\(V, E, s, w \))

1. \texttt{Init-Single-Source(V, s)}
2. topologically sort the vertices
3. for each \(u \) in topologically sorted \(V \)
4. do for each \(v \in Adj[u] \)
5. do \texttt{RELAX}(u, v, w)

All Pairs Shortest Paths

- The output of an all pairs shortest path algorithm is a matrix \(D = (d)_{ij} \), where \(d_{ij} = \delta(i, j) \)
- DP: \(\ell^{(m)}_{ij} \) be the shortest path from \(i \in V \) to \(j \in V \) that uses \(\leq m \) edges
 \[\ell^{(m)}_{ij} = \min_{1 \leq k \leq n} \left(\ell^{(m-1)}_{ik} + w_{kj} \right) \]

\texttt{All-Pairs-Shortest-Paths(V, E, w)}

1. create \((n \times n)\) matrix \(L' \)
2. for \(i \leftarrow 1 \) to \(n \)
3. do for \(j \leftarrow 1 \) to \(n \)
4. do \(\ell'_{ij} \leftarrow \infty \)
5. for \(k \leftarrow 1 \) to \(n \)
6. do \(\ell'_{ij} \leftarrow \min(\ell'_{ij}, \ell_{ik} + w_{kj}) \)

- Dijkstra's Algorithm Runs in \(O(E \lg V) \), with a binary heap implementation.
- We can speed this up.
Faster All-Pairs-Shortest-Paths

APSP2(W)
1 \(L^{(1)} = W \)
2 \(m \leftarrow 1 \)
3 while \(m \leq n - 1 \)
4 do \(L^{(2m)} = \text{Extend}(L^m, L^m) \)
5 \(m \leftarrow 2m \)
6 return \(L^{(m)} \)

- OK to “overshoot” \(n - 1 \), since shortest path labels don’t change after \(m = n - 1 \) (since no negative cycles)
- “Repeated squaring” is a technique used to improve the efficiency of lots of other algorithms
- Analysis:

Floyd-Warshall

\[d_{ij}^{(k)} = \begin{cases}
 w_{ij} & k = 0 \\
 \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}) & k \geq 1
\end{cases} \]

- We look for \(D^{(n)} = (d_{ij}^{(n)}) \)

Flows

- A net flow is a function \(f : V \times V \rightarrow \mathbb{R}^{|V| \times |V|} \) that satisfies three conditions:
- Capacity Constraints:
 \[0 \leq f(u, v) \leq c(u, v) \]
- Skew Symmetry:
 \[f(u, v) = -f(v, u) \quad \forall u, v \in V \]
- Flow Conservation:
 \[\sum_{v \in V} f(u, v) = 0 \quad \forall u \in V \setminus \{s, t\} \]

The Maximum Flow Problem

Given \(G = (V, E) \), source node \(s \in V \), sink node \(t \in V \), edge capacities \(c \). Find a flow whose value is maximum.
Flow Phacts

- For any cut \((S, T)\), \(f(S, T) = |f|\)
- Residual capacity of arcs given flow:
 \[c_f(u, v) \overset{\text{def}}{=} c(u, v) - f(u, v) \geq 0.\]
- Give flow \(f\), we can create a residual network from the flow.
 \(G_f = (V, E_f)\), with
 \[E_f \overset{\text{def}}{=} \{(u, v) \in V \times V \mid c_f(u, v) > 0\},\]
 so that each edge in the residual network can admit a positive flow.

Max-Flow Min-Cut Theorem

The following statements are equivalent
1. \(f\) is a maximum flow
2. \(f\) admits no augmenting path. (No \((s, t)\) path in residual network)
3. \(|f| = c(S, T)\) for some cut \((S, T)\)

Ford-Fulkerson (\(V, E, c, s, t\))
1. for \(i \leftarrow 1\) to \(n\)
2. do \(f[u, v] \leftarrow f[v, u] \leftarrow 0\)
3. while \(\exists\) augmenting path \(P\) in \(G_f\)
4. do augment \(f\) by \(c_f(P)\)

Analysis of this? Do better algorithms exist?

Maximum Bipartite Matching

- A graph \(G = (V, E)\) is bipartite if we can partition the vertices into \(V = L \cup R\) such that all edges in \(E\) go between \(L\) and \(R\)
- A matching is a subset of edges \(M \subseteq E\) such that for all \(v \in V, \leq 1\) edge of \(M\) is incident upon it.

Stuff To Know: EVERYTHING!

DP and Greedy
- Develop (and potentially solve small) problems via DP
- Activity Selection (or related problems): Greedy Works

Graphs
- BFS, DFS, and Analysis.
- Classifying edges in directed and undirected graphs
- Topological Sorting
- Finding Strongly Connected Components

Spanning Trees
- Kruskal’s Algorithm (and analysis)
- Prim’s Algorithm (and analysis)
More Stuff To Know...

Single Source Shortest Paths
- Distance Labels and Relax
- Path Relaxation Property
- Bellman-Ford Algorithm
 - How to do it
 - When (Why?) it works
 - Analysis
- SSSP Dag
 - How to do it
 - When (Why?) it works
 - Analysis
- Dijkstra’s Algorithm
 - How to do it
 - When (Why?) it works
 - Analysis

Even More Stuff To Know...

All Pairs Shortest Paths
- Analogue to Matrix Multiplication
- Floyd-Warshall
 - How to do it?
 - When (Why?) it works?
 - Analysis

Flows
- What is a flow?
- What is a cut?
- What is MFMC Theorem?
- How to create residual graph \(G_f \)?
- How to do Augmenting Paths algorithm (Ford Fulkerson/Edmonds Karp)
- Analysis

Next Time

- **Quiz!** April 4
- No Class: Friday April 6. Have a nice holiday! We start numerical methods on Monday