Taking Stock

Last Time
- Θ, O and Ω
- Recursion. See recursion.
- Analyzing Recurrences

This Time
- Analyzing a simple algorithm
- The impact of data structures

A Canonical Problem

Example: The Sorting Problem
- Input: A sequence of numbers \(a_1, a_2, \ldots, a_n \)
- Output: A reordering \(a'_1, a'_2, \ldots, a'_n \) such that \(a'_1 \leq a'_2 \leq \cdots \leq a'_n \).

- Sorting “in place”: No new memory is allocated (or at least a constant amount of memory is allocated). (The input is usually overwritten by the output as the algorithm executes.)
- Sorting “out of place”: New memory must be allocated
Sample. Reverse-Out-Of-Place

In this case, we allocate a new array B

```java
public static void reverseOP(int A[]) {
    int n = A.length;
    int B[] = new int[n];
    for (int j = 0; j < n; j++) {
        B[n-1-j] = A[j];
    }
    System.arraycopy(B,0,A,0,n);
}
```

Sample. Reverse-In-Place

Here everything is done directly on A

```java
public static void reverseIP(int A[]) {
    int n = A.length;
    for(int j = 0; j < n/2; j++){
        // Swap A[j] and A[n-j-1]
        int t = A[j];
        A[j] = A[n-j-1];
        A[n-j-1] = t;
    }
}
```

Sorting: Some Java Code

```java
public static void iSortMe(int A[]) {
    for(int j = 1; j < A.length; j++) {
        int key = A[j];
        int i = j-1;
        while(i >= 0 && A[i] > key) {
            A[i+1] = A[i];
            i = i-1;
        }
        A[i+1] = key;
    }
}
```

Example of How It Works

```
<table>
<thead>
<tr>
<th>$j = 1$</th>
<th>$j = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 3 6 1 42 9</td>
<td>1 3 6 11 42 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$j = 2$</th>
<th>$j = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 11 6 1 42 9</td>
<td>1 3 6 11 42 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$j = 3$</th>
<th>$j = 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 6 11 1 42 9</td>
<td>1 3 6 9 11 42</td>
</tr>
</tbody>
</table>
```
Is It Correct?!?

- We often use a **loop invariant** to prove the correctness of an algorithm.

Insertion Sort Loop Invariant

At the start of each iteration of the outer `for` loop (the loop indexed by `j`), the subarray `A[0, ..., j-1]` consists of the elements originally in `A[1..j-1]` but in sorted order.

Can We Prove This Works

- **Initialization**: `j = 1`, The subarray `A[0, ..., j-1]` is just `A[0]` which is in sorted order. **Duh**!
- **Maintenance**: The book (and we) will gloss over this a bit. The loops function is to move `A[j-1], A[j-2], ...` one position to the right until the proper position for item `j` is found. Thus the subarray `A[0, ..., j]` remains sorted (which becomes `A[0, ..., j-1]` when the loop is incremented).
- **Termination**: When loop exits, `j = n`, so the (sub)array `A[0, ..., n-1]` is sorted.

Q.E.D

CountVonCount

```java
public static void iSortMe(int A[]) {
    for(int j = 1; j < A.length; j++) {
        int key = A[j];
        int i = j-1;
        while(i >= 0 && A[i] > key) {
            A[i+1] = A[i];
            i = i-1;
        }
        A[i+1] = key;
    }
}
```

Loop Invariants

It’s Like Induction!

- **Base Case**: It is true prior to the first iteration of the loop
- **Maintenance**: If it is true before a loop iteration, it is true after the loop iteration
- **Termination**: Hopefully, the invariant will have a useful property when the loop terminates. In this case, it would “prove” that the array is sorted.
Analysis

- To analyze our algorithm, we need to count the number of times each command is done
- \(T(n) \): Running time of algorithm if “input size” (array size) is \(n \)
- \(t_j \): The number of times the “while” statement is executed for item \(j \)

\[
T(n) = c_1 n + c_2 (n - 1) + c_3 (n - 1) + c_4 \sum_{j=1}^{n-1} t_j \\
+ c_5 \sum_{j=1}^{n-1} (t_j - 1) + c_6 \sum_{j=1}^{n-1} (t_j - 1) + c_7 (n - 1)
\]

Best Case

- Let’s Assume that \(A[i] \leq \text{key} \) for each \(j \).
- The array is already sorted!
- The while loop is executed only once each time: \(t_j = 1 \), so the running time becomes

\[
T(n) = c_1 n + c_2 (n - 1) + c_3 (n - 1) + c_4 (n - 1) + c_4 (n - 1) + c_7 (n - 1)
\]

- This is a linear function of \(n \): \(T(n) = \Theta(n) \)

Worst Case

- We find \(A[i] > \text{key} \) for all elements. while loop only exits because \(i < 0 \)
- In this case (since must test to see that \(i < 0 \), \(t_j = j \)
- In this case running time becomes

\[
T(n) = c_1 n + c_2 (n - 1) + c_3 (n - 1) + c_4 \sum_{j=1}^{n-1} j \\
+ c_5 \sum_{j=1}^{n-1} (j - 1) + c_6 \sum_{j=1}^{n-1} (j - 1) + c_7 (n - 1)
\]

- Aren’t you glad Gauss is your friend?
- We will (?) show that this is a quadratic function of \(n \): \(T(n) = \Theta(n^2) \)

Case Analysis

- We could also perform an average case analysis of this algorithm. (In this case, you would see it \(T(n) = \Theta(n^2) \))
- We generally don’t do this, because it is hard!

Which Function \(T(n) \) Do We Use!?

- Computer scientists are a cautious bunch, so typically we will analyze the worst case behavior.
- It does have some advantages
 - It provides an upper bound
 - For some algorithms it frequently happens

Sorting Exercise

- Insertion Sort
- Merge Sort!
- You will be responsible for knowing how merge sort works (Section 2.3)

What is a Data Structure?

- Computers operate on tables of numbers (the data).
- Within the context of solving a given problem, this data has structure.
- Data structures are schemes for storing and manipulating data that allow us to more easily see the structure of the data.
- Data structures allow us to perform certain operations on the data more easily.
- The data structure that is most appropriate depends on how the algorithm needs to manipulate the data.

Importance of Data Structures

- Specifying an algorithm completely includes specifying the data structures to be used (sometimes this is the hardest part).
- It is possible for the same basic algorithm to have several different implementations with different data structures.
- Which data structure is best depends on what operations have to be performed on the data.

Example

- Consider the two implementations of the list class that you will become intimately familiar with in lab
- An array is a simple data structure that allows us to store a sequence of numbers.
- A linked list does the same thing.
- You should know the difference? (Yes?)
A List Interface

public interface MyList {
 public void add(int index, Object element);
 public boolean contains(Object element);
 public Object get(int index);
 public int index0f(Object element);
 public Object remove(int index);
}

Comparing List Data Structures

- To compare the two data structures, we must analyze the running time of each operation.
- This table compares the running times of the operations.
- Usually list interfaces have other operations
- You will try and implement this stuff in lab

<table>
<thead>
<tr>
<th>Operation</th>
<th>Array</th>
<th>Linked List</th>
</tr>
</thead>
<tbody>
<tr>
<td>getNumItems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>get</td>
<td></td>
<td></td>
</tr>
<tr>
<td>add</td>
<td></td>
<td></td>
</tr>
<tr>
<td>remove</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Next Time

- Back to the Master Theorem – Analyzing Recurrences
- So far, we have covered chapters 1-4 and Appendix A & B