Heaps

A heap is a balanced binary tree with additional structure that allows it to function efficiently as a priority queue.

There are two types of heaps: max and min. In lecture, I’ll stick to max

Priority Queue (Max)
- $\text{INSERT}(x)$
- $\text{MAXIMUM}()$
- $x = \text{EXTRACT-MAX}()$
- $\text{INCREASE-KEY}(x, k)$

Taking Stock

Last Time
- Binary Search Trees
- Java Collections Interfaces: Maps
- Heap \neq Binary Search Tree

This Time
- Heaps
- Heap Sort

Heaps

Heaps are a bit like binary search trees, however, they enforce a different property

Heap Property: Children are Horrible!
- In a max-heap, the key of the parent node is always at least as big as its children:
 \[k(p(x)) \geq k(x) \quad \forall x \neq \text{root} \]

- Children are great in min-heaps
How to Keep the Heap Property?

- Consider a tree in which all nodes except for one have the heap property.
- We can transform this into a tree in which every node has the heap property.
- This operation is called HEAPIFY().

Heapify

HEAPIFY(x)

1. Find largest of \(k(x), k(\ell(x)), k(r(x)) \)
2. If \(k(x) \) is largest, you are done
3. Swap \(x \) with largest node, and call HEAPIFY() on the new subtree

- Intuition behind analysis: Heap is binary tree, so \(\leq \lg n \) levels.
 - There is a constant amount of work at each level: comparing three items and swapping two.
- \(\Rightarrow \) HEAPIFY a node in \(O(\lg n) \)
- Alternatively, HEAPIFY node of height \(h \) is \(O(h) \)
 - Height of node: number of edges on path to leaf

To Build a Heap

- By calling HEAPIFY() on each node, starting at the next to last level and working upward, we can transform an unordered binary tree into a heap.

Analysis

- \(O(n) \) calls to HEAPIFY, each of which takes \(O(\lg n) \)
 - \(\Rightarrow n \lg n \)
- But we can do better!

Building A Heap – Analysis

- Note that HEAPIFY really takes \(O(h) \) on a node of height \(h \)
- There aren’t “too many” high nodes. In fact, there are \(\leq \lceil n/(2^h+1) \rceil \)
- Total Running Time is no more than

\[
\sum_{h=1}^{\lceil \lg n \rceil} \frac{n}{2^h+1} O(h) = O \left(n \sum_{h=0}^{\lceil \lg n \rceil} \frac{h}{2^h} \right).
\]

- Since \(\sum_{h=0}^{\infty} h/2^h = 2 \), running time to make a heap is \(O(n) \).
Operations on a Heap

- The node with the highest key is always the root.
- To delete a record
 - Exchange its record with that of a leaf.
 - Delete the leaf.
 - Call heapify().
- To add a record
 - Create a new leaf.
 - Exchange the new record with that of the parent node if it has a higher key.
 - This is like insertion sort – just move it up the path...
 - Continue to do this until all nodes have the heap property.
 - Note that we can change the key of a node in a similar fashion.

Time for Heap Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Time Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREATE</td>
<td>O(n)</td>
</tr>
<tr>
<td>MAXIMUM</td>
<td>Θ(1)</td>
</tr>
<tr>
<td>HEAPIFY</td>
<td>O(lg n), or O(h)</td>
</tr>
<tr>
<td>EXTRACT-MAX</td>
<td>O(lg n)</td>
</tr>
<tr>
<td>HEAP-INCREASE-KEY</td>
<td>O(lg n)</td>
</tr>
<tr>
<td>INSERT</td>
<td>O(lg n)</td>
</tr>
</tbody>
</table>

Heap Sort

- Suppose the list of items to be sorted are in an array of size n.
- The heap sort algorithm is as follows.
 1. Put the array in heap order as described above.
 2. In the i^{th} iteration, exchange the item in position 0 with the item in position $n - i$ and call heapify().
- Why is this correct?
- What is the running time?

Next Time?

- Review, Review, Review.
- We have covered chapters 1-4, 6, 10-11, and Appendices A and B: That’s a lot!

News

- Homework due 2/5 – No late homework – We do review on 2/5
- Quiz on 2/7
Bear Down, Chicago Bears!