Assembly Modeling
• Many modelers have been used to create models of single components.
• Previous design procedure was to assemble the actual components or prototype later in the design cycle.
• Physical distance between design teams in global corporations and the need for electronic transfer fueled the need for computer-based assemblies.

Assembly Modeling
• Automotive and aerospace industries among the first to make extensive used of assembly modeling.

Assembly Modeling
• Provides a logical structure for grouping and organizing components into assemblies.
• Structure permits:
 – identification of components
 – control of associated data (e.g. BOM)
 – control of relationships between components and sub-assemblies

Assembly Modeling
• Most assembly modelers work by creating a file which includes only:
 – pointers to the individual components used
 – the constraints used to position the components with respect to one another
 – multiply occurrences of the same component are handled by instancing

Assembly Modeling
• Relationship data includes
 – Constraint information
 • orientation and location of components with respect to one another
 • variational relationship between features of different parts
 – Instancing information
 • multiple occurrences of the same component
 – Tolerance and fit information
 • part interference and clearance

Assembly Modeling
• Inter-part dimensions provide control when an assembly depends upon key dimensions (e.g. hole patterns)
• Provides a mechanism for propagating a design change throughout all components of an assembly without modifying each component individually.
Assembly Model Uses

- Creation of orthographic assembly drawings.
- Creation of exploded assemblies.
- Facilitate packaging
- Perform interference and clearance checks.

Assembly Modeling

- Most modern feature-based, constraint-based systems have assembly capabilities.
- In addition to the Sketcher, Constraint Engine and Feature Manager, they include an Assembly Manager.

Assembly manager

- Permits creation of:
 - sub-assemblies from parts
 - assemblies from sub-assemblies and parts
- Controls relative placement of parts/sub-assemblies (constraints)
- Controls regeneration of assemblies/subassemblies after modification

Part/sub-assembly placement

- Examples of constraints applied to assemble components
 - alignment
 - surfaces, axes
 - with offset distances
 - mating
 - surfaces, edges
 - coincidence
 - points, edges

Simplified Representation

- Large assembly models can seriously stain the processor capabilities of the hardware system being used.
- In these cases, many assembly modelers provide means for simplifying the assembly.
- The use of instancing helps reduce complexity.

Simplified Representation

- Another technique used is aggregation.
 - Grouping components and sub-assemblies into a single static definition.
- Many systems also support the use of simplified representations.
 - complexities such as fillets/rounds removed
 - representation may simply be the "envelope" of the part with mating features.