Developing Layout from Concepts

- System form grows from;
 - Connections between components,
 - Relationships (including proximity) with other components and devices,
 - Relationships with users (operators, service, etc.)
System and Component Layout

How to begin

• Once again, consider function(s)

• Define subsystems by function performed
 Names are not critical
 For your understanding only

• Consider spatial relationships for subsystems/components
 between components, with users, etc.

• Sketch relationships and proximities
System and Component Layout

• Consider constraints to components and subsystems

Size envelope
 What is physical envelope available?
 Is size/space limited?
 Is movement required?

What is the operating environment?

Relationship with fixed or unalterable components
 Purchased components
 Existing interfacing systems
 Is design a retrofit?
System and Component Layout

- Consider constraints to subsystems and components

Relationship with user
 - Contact clearances, safety

Optical paths

Do constraints change with varying operational steps?
• Initially, spatial constraints apply to entire system.
• As design evolves, constraints between components emerge.
• Use bubble or block diagrams to show
 Relationships
 Connectivity's
 Access
 Avoidance
Considerations when performing layout

• Attachments / Mountings
 fasteners, welded, adhesive, etc.
 attachment surfaces (sufficient size, accuracy)

• Forces applied
 how are forces applied?
 where are forces applied?

• Motions required
 what is type of motion?
 sliding
 rotating
 use of linkages
Consider Component Relationships

- Component to Component
- Component to System/Layout Boundary
- Component to User
Relationships
Component to Component

• Close/contact
 Linked or attached
 Direct flow of Energy, Information, Mass/Material

• Near
 Components have related function(s)
 Components have common maintenance requirements
 Components share attachment/mounting

• Far (distant or barrier)
 Components have conflicting functions
 Possibility of contamination exists
 Thermal, vibrational issues exist
Near Proximity

Distant (barrier)
Relationships
Component to Layout Boundary

- **Flow of information**
 - Controls
 - Service

- **Flow of energy**
 - Power I/O
 - Heatsink
 - Ventilation

- **Flow of mass**
 - Consumables (materials used in operation)
 - Items which system operating upon (e.g. CD in CD drive)
Flow of Mass

Distant (barrier)

Flow of Information
- Human Factors/Ergonomics
 - Operation of device
 - Maintenance of device

Negative effects of operation
 - Noise
 - Vibration
 - Heat/Odor
Example: Water Quality Buoy