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Abstract.  Implicit Runge-Kutta integration algorithms based on generalized 

coordinate partitioning are presented for numerical solution of the differential-algebraic 

equations of motion of multibody dynamics.  Second order integration formulas are 

derived from well known first order Runge-Kutta integrators, defining independent 

generalized coordinates and their first time derivative as functions of independent 

accelerations.  The latter are determined as the solution of discretized equations of motion 

that are obtained by inflating underlying state space, second order ordinary differential 

equations of motion in independent coordinates to descriptor form.  Dependent variables 

in the formulation, including Lagrange multipliers, are determined using kinematic and 

kinetic equations of multibody dynamics.  The proposed method is tested with a large-

scale mechanical system that exhibits stiff behavior.  Results show that the algorithm is 

robust and has the capability to integrate the differential-algebraic equations of motion 

for stiff multibody dynamic systems. 
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1. Introduction 

In this paper, q = q q qk
T

1 2, ,...,  denotes the vector of generalized coordinates 

that define the state of a multibody system (Haug, 1989).  For rigid bodies, the 

generalized coordinates are Cartesian position coordinates and orientation Euler 

parameters of body centroidal reference frames.  Joints connecting the bodies of a 

mechanical system restrict their relative motion and impose constraints on the 

generalized coordinates.  Kinematic constraints are expressed as algebraic expressions 

involving generalized coordinates; i.e., expressions of the form 

 Φ( ) ( ), ( ),..., ( )q q q q≡ =Φ Φ Φ1 2 m
T 0  (1) 

Differentiating Eq. (1) with respect to time yields the kinematic velocity equation, 

 Φq q q 0b g� =  (2) 

where subscript denotes partial differentiation; i.e., Φq =
L
NMM
O
QPP

∂Φ
∂

i

jq
, and an over dot denotes 

differentiation with respect to time.  Differentiating Eq. (2) with respect to time yields the 

kinematic acceleration equation, 

 Φ Φq q q
q q q q q qb g d i b g�� � � , �= − ≡ τ  (3) 

Equations (1) through (3) characterize the admissible motion of the mechanical system. 

The mechanical system configuration changes in time under the effect of applied 

forces.  The Lagrange multiplier form of the constrained equations of motion for the 

mechanical system is (Haug, 1989) 

 M q Q q qq( )�� ( ) ( �q q+ =ΦT , , t)λ A  (4) 
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where M q( ) is the system mass matrix, λ  is the vector of Lagrange multipliers that 

account for workless constraint forces, and Q q q,A , � tb g  is the vector of generalized 

applied forces. 

Equations (1) through (4) comprise a system of differential-algebraic equations 

(DAE).  It is known (Petzold, 1982) that DAE are not ordinary differential equations 

(ODE).  While analytically satisfying Eqs. (1) and (4) assures that Eqs. (2) and (3) are 

also satisfied, when the problem is solved numerically, this ceases to be the case.  In 

general, the task of obtaining a numerical solution of the DAE of Eqs. (1) through (4) is 

substantially more difficult and prone to intense numerical computation than one of 

solving ODE.  For a review of the literature on numerical integration methods for 

solution of the DAE of multibody dynamics, the reader is referred to a paper by Haug, 

Negrut, and Iancu (1997). 
 

2. Differential-Algebraic Equations of Multibody Dynamics 

Equations (3) and (4) may be written in matrix form as 

 
M q

0
q Q q q

q q
q

q

b g b g
b g

Φ
Φ λ τ

T AL
NMM

O
QPP
L
NM
O
QP =
L
NM

O
QP

�� , � ,
, �

t
 (5) 

which is called the descriptor form of the equations of motion.  Equations (1), (2), and (5) 

must be satisfied by the numerical solution to be constructed.  This system of differential-

algebraic equations may be treated by reducing it to a set of state-space ordinary 

differential equations.  This is most easily done by selecting an independent subset of the 

generalized coordinates q and reducing the equations of motion to differential equations 

in the independent coordinates. 

In order to determine a partitioning of the generalized coordinates q into 

dependent and independent coordinate vectors u and v, respectively, a set of consistent 
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generalized coordinates q0 ; i.e., satisfying Eq. (1), is first determined.  In this 

configuration, the constraint Jacobian matrix is evaluated and numerically factored, using 

the Gauss-Jordan algorithm (Atkinson, 1989), 

 Φq q0( )→ Φu q0( ) Φv q0( )[ ] (6) 

The order of appearance of generalized coordinates associated with columns of the 

resulting matrix yields a nonsingular sub-Jacobian with respect to u; i.e., 

 det Φu q0( )( )≠ 0  (7) 

This can always be done if the constraint equations are independent (Haug, 1989). 

Having partitioned the generalized coordinates, Eqs. (1) through (4) can be 

rewritten in the associated partitioned form (Haug, 1989), 

 M u v v M u v u u v Q u v u vvv vu
v
T v, , , , , ,b g b g b g b g�� �� � �+ + =Φ λ  (8) 

 M u v v M u v u u v Q u v u vuv uu
u
T u, , , , , ,b g b g b g b g�� �� � �+ + =Φ λ  (9) 

 Φ(u,v) = 0  (10) 

 Φ Φu vu v u u v v 0( , ) � ( , ) �+ =  (11) 

 Φ Φ τu vu v u u v v u v u v( , )�� ( , )�� , , � , �+ = b g  (12) 

The condition of Eq. (7) and the implicit function theorem (Corwin and Szczarba, 

1982) guarantee that Eq. (10) can be solved for u as a function of v, 

 u = g(v)  (13) 

where the function g( )q  has as many continuous derivatives as does the constraint 

function Φ( )q .  Thus, at an admissible configuration q0 , there exist neighborhoods U1 of 

v0  and U2  of u0, and a function g : U1 → U2  such that for any v ∈U1 , Eq. (10) is 

identically satisfied when u is given by Eq. (13).  The analytical form of the function 
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g v( ) is not known, but g v( )∗  can be evaluated by fixing v v= ∗ in Eq. (10) and iteratively 

solving for  u g v∗ ∗= ( ) . 

Using the partitioning of generalized coordinates induced by Eq. (6), the system 

of DAE in Eqs. (8), (9), and (12) is reduced to a state-space ODE, through a succession 

of steps that use information provided by Eqs. (10) and (11).  Since the coefficient matrix 

of �u  in Eq. (11) is nonsingular, �u  can be determined as a function of v and �v , where Eq. 

(13) is used to eliminate explicit dependence on u.  Next, Eq. (12) uniquely determines ��u  

as a function of v, �v , and ��v , where results from Eqs. (11) and (13) are substituted.  Since 

the coefficient matrix of λ  in Eq. (9) is nonsingular, λ  can be determined uniquely as a 

function of v, �v , and ��v , using previously derived results.  Finally, each of the preceding 

results is substituted into Eq. (8) to obtain an underlying state-space ODE in only the 

independent generalized coordinates v (Haug, 1989), 

 � ( )�� � ( �M v Q q qq = , , t) (14) 

where 

 
�

�

M M M M M

Q Q M Q M

vv vu uv uu

v vu u uu

= − − −

= − − −

− − −

− − −

Φ Φ Φ Φ Φ Φ

Φ τ Φ Φ Φ τ

u v v u u v

u v u u

1 1 1

1 1 1

T T

T T

c h
c h

 (15) 

 

3. Implicit Runge-Kutta Integration Formulas 

Implicit Runge-Kutta numerical integration methods (Hairer, Nørsett, and 

Wanner, 1993) have been well developed for the solution of first ordinary differential 

equations of the form 

 �y = f t, yb g (16) 

A broad range of Runge-Kutta integrators for this problem can be written in the form 
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 k f t c h y h a k i si n i n ij j
j

i

= + +
F
HG

I
KJ =

=
∑, , ,...,

1

1  (17) 

 y y h b kn n i i
i

s

+
=

= + ∑1
1

 (18) 

where tn  is the current time step; yn  is the approximate solution at tn ; aij , bi , and ci  are 

constants; s  is the number of stages in integrating from tn  to tn+1; ki  are stage variables; 

and h is the step-size. 

Note that in all cases treated here, aij = 0 for i j< ; i.e., only diagonally implicit 

Runge-Kutta (DIRK) methods (Hairer, Nørsett, and Wanner, 1993) with aii ≠ 0  are 

considered.  According to Eq. (17), in successive stages, ki  appears on both sides of the 

equation.  Since f  assumes a nonlinear form, an iterative method for solving for the 

stage variable ki  is required. 

In order to make Runge-Kutta methods suitable for integration of the second order 

differential-algebraic equations of multibody dynamics, the second argument on the right 

of Eq. (17) is interpreted as an approximate solution at time t t c hi n i= + ; i.e., 

 z y h a zi n ij
j

i

j= +
=

∑
1

�  (19) 

Substituting Eq. (19) into Eq. (17) and regarding the left side as �zi , the equation can be 

solved for �zi . Once all stages in Eq. (17) are solved for the associated �zi , the results are 

substituted into Eq. (18) to obtain 

 y y h b zn n i
i

s

i+
=

= + ∑1
1

�  (20) 

Applying Eq. (19) to integrate acceleration yields 

 � � ��z y h a zi n ij
j

i

j= +
=

∑
1

 (21) 
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Extending the integration formula of Eq. (20) to second order, 

 � � ��y y h b zn n i
i

s

i+
=

= + ∑1
1

 (22) 

In order to enable solution of second order differential equations using Eqs. (20) 

and (22), with ��zi  as the solution variable in the discretized equations of motion, it is 

helpful to substitute from Eq. (21) into Eq. (20), to obtain 

 

y y h b y h a z

y h b y h b a z

y hy h b z

n n i
i

s

n ij j
j

i

n i
i

s

n i ij
i

s

j

s

j

n n j
j

s

j

+
= =

= ==

=

= + +
F
HG

I
KJ

= +
F
HG
I
KJ +

F
HG

I
KJ

= + +

∑ ∑

∑ ∑∑

∑

1
1 1

1

2

11

2

1

� ��

� ��

� ��

 (23) 

where it is recalled that aij = 0 for j i>  and bi
i

s

=
∑ =

1

1, and defining 

 b b aj i ij
i

s
=

=
∑

1

 (24) 

Likewise, Eq. (21) may be substituted into Eq. (19) to obtain 

 

z y h a y h a z j i j

y h a y h a a z j i

y hc y h a z

i n ij
j

i

n j

j

n ij
j

i

n ij j
j

ss

n i n i

i

= + +
F
HG

I
KJ = =

= +
F
HG
I
KJ +

F
HG

I
KJ < <

= + +

= =

= ==

=

∑ ∑

∑ ∑∑

∑

1 1

1

2

11

2

1

1 1� �� , ,..., ,...,

� �� ,

� ��

A A
A

A
A

A

A A
A

A

A  (25) 

where the upper limits of the double summation in Eq. (25) are changed from l  and j  to 

s , since l j i≤ ≤  and a jl = 0 for l j> , and the notation  
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 a a ail ij jl
j

s

=
=

∑
1

 (26) 

is used.  Note that if l i> , each term in the sum is zero and ail = 0. 

The approach taken in this paper to integrating the differential-algebraic equations 

of multibody dynamics is to insert Eqs. (21) and (25) for independent coordinates into the 

state-space ordinary differential equation of Eq. (14).  This approach is commonly used 

with Newmark methods in structural dynamics (Hughes, 1987) and is applicable for 

multibody dynamics (Haug, Iancu, and Negrut, 1997).  The resulting equations are 

equivalent to making the same substitution into the descriptor form of Eq. (5), using Eqs. 

(10) and (11) to determine dependent coordinates and their first time derivatives.  The 

resulting discretized equations of motion involve both independent and dependent 

accelerations and Lagrange multipliers as solution variables.  They are solved 

numerically and the Runge-Kutta algorithm of Eqs. (25), (21), (20), and (23) is used, just 

as in the conventional first order implementation of Runge-Kutta methods. 
 

4. Implicit Runge-Kutta Integration of the Equations of Multibody Dynamics 

In order to apply implicit Runge-Kutta methods for integrating the equations of 

multibody dynamics, it is instructive to first apply them to the underlying state-space 

ordinary differential equation of Eq. (14).  Substituting Eqs. (25) and (21) into Eq. (14), 

at stage s  of the Runge-Kutta method, yields 

� � �� �� � � �� , � �� , ,M v v z z Q v v z v zn i n i

i

i n i n i n ij j n i
j

ii

hc h a hc h a h a t c h+ +
F
HG

I
KJ = + + + +
F
HG

I
KJ= ==

∑ ∑∑2

1

2

11
A A

A
A A

A
 

 i =1,...,s  (27) 
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Since ��zi  appears in all arguments of this nonlinear equation, iterative solution 

methods are required.  If the equation is satisfied, then dependent coordinates and their 

first derivatives can be determined from the kinematic constraint equations and the 

numerical integration processed can be continued. 

Since the functions arising in Eq. (27), with �M( )⋅  and �Q( )⋅  given in Eq. (15), are 

highly nonlinear and complex, it is not a simple matter to  computate  the Jacobian matrix 

of the discretized equations of Eq. (27).  Alternatively, the integration formulas may be 

substituted into the inflated descriptor form of Eq. (5), to obtain an equivalent system of 

equations.  In order to make this substitution, however, all generalized coordinates and 

their first time derivatives must be written in terms of the solution variables, in this case 

the accelerations. 

It is assumed that the generalized coordinates have been partitioned and reordered 

so that q = uT ,vT[ ]T
; i.e., 

 v Pq 0 I q= ≡ ,  (28) 

where P  is a boolean matrix containing only zeros and unit values.  Since P  is a constant 

matrix, � �v Pq=  and �� ��v Pq= .  Likewise, with w  as the full vector of stage generalized 

coordinates and z as independent stage coordinates, 

 z = Pw  (29) 

Using this notation and recalling that the boolean matrix is constant, Eqs. (25) and 

(21) may be written in the form 

 z Pq Pq Pwi n i n i

i

hc h a= + +
=

∑� ��2

1
A

A
A  (30) 

 � � ��z Pq Pwi n ij j
j

i

h a= +
=

∑
1

 (31) 
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Substituting independent stage coordinates zi  from Eq. (30) into Eq. (13) yields 

dependent stage coordinates xi  as 

 x g g Pq Pq Pwi i i i

i

hc h a= = + +
F
HG

I
KJ=

∑zb g n n� ��2

1
A A

A
 (32) 

Even though the function g( )⋅  is not known explicitly, Eq. (32) shows clearly that 

dependent stage coordinates are functions of stage accelerations, through the Runge-

Kutta integration formulas.  From Eq. (11), dependent stage velocities may be written as 

functions of independent stage velocities and, through use of Eq. (31), as functions of 

stage accelerations, 

 � � � � ��x z Hz HPq HPwu vi i i n ij j

i

h a= − ≡ = +−

=
∑Φ Φ1

1A
 (33) 

where H  is computed as the solution of the multiple right side system of linear equations 

 ΦuH = −Φv  (34) 

Regarding all stage generalized coordinates and their first time derivatives to be 

functions of accelerations, via Eqs. (30) through (33), the equations of motion can be 

written in the form 

 M w w w w w Q w w w wqi i i
T

i i i i i i i�� �� �� �� , � ��b gc h b gc h b g b gc h+ =Φ λ A  (35) 

Similarly, the kinematic acceleration equations of Eq. (3) may be written as 

 Φ τq w w w w w w wi i i i i i i�� �� �� , � ��b gc h b g b gc h=  (36) 

Equations (35) and (36) emphasize the dependence of coefficients in the descriptor form 

of the equations of motion on the unknown stage accelerations.  In order to iteratively 

solve Eqs. (35) and (36), all derivatives with respect to the unknown accelerations must 

be determined. 

From Eq. (30), 
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 z P
wii iih a
��

= 2  (37) 

Differentiating Eq. (10) with respect to stage accelerations, 

 Φ Φu vx z
w wi ii i�� ��

= −  (38) 

Solving for the desired derivatives and using Eq. (37), 

 
x z Hz

HP
w w wu vi i i

ii

i i i

h a
�� �� ��

= −Φ Φ−1 =

= 2
 (39) 

Combining these results yields 

 w
HP
P

H
wi ii iii

h a h a
��

�= 2 2L
NM
O
QP =  (40) 

where 

 ˆ H =
HP
P

 
  

 
   (41) 

From Eq. (31), 

 �
��

z P
wi iii

ha=  (42) 

Differentiating Eq. (11) with respect to stage accelerations and using Eqs. (40) and (42) 

yields 

 
Φ Φ Φ

Φ Φ

u v q q

v q q

x z w w

P w H

w w w
� � � �

� �
�� �� ��i i i i

ii ii i

i i i

ha h a

= − −

= − −

c h
c h2

 (43) 

Solving for the desired derivatives yields 

 
� � �

��
x HP w H

HP J
w u q qi ii ii i

ii ii

i
ha h a

ha h a

= −

+

−2 1

2

Φ Φc h
=

 (44) 
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where J is defined as the solution of  

 Φ Φu q q
J w H= − � �

id i  (45) 

Combining Eqs. (42) and (44) yields 

 � � �
��

w H J
wi ii iii

ha h a= + 2  (46) 

where 

 ˆ J =
J
0

 
  

 
   (47) 

With the results of Eqs. (40) and (46), all derivatives required to iteratively solve 

Eqs. (35) and (36) are available.  To make explicit the derivative calculations required, 

the discretized equations are written in descriptor form as 

 Ψ
Φ λ

Φ τ
≡

+ −
−

L
NMM

O
QPP

=
M w w w Q w w

w w w w
0q

q

i i
T

i i
A

i i

i i i i

b g b g b g
b g b g

�� , �
�� , �

 (48) 

Derivatives of Ψ  with respect to stage accelerations ��w i  are obtained, using the chain rule 

of differentiation and Eqs. (40) and (46), as 

 Ψ
Φ λ

Φ Φ τ τ
��

�

�

�� � � �

�� � � �w
q q q q q

q q q q q

M Mw Q H Q H J

w H H J
i

h a ha h a

h a ha h a

ii
T

i
A A

ii ii

ii ii ii

=
+ + − − +

+ − − +

L

N
MMM

O

Q
PPP

2 2

2 2

i

i

b g d i
d i

 (49) 

More directly, the derivative of Ψ  with respect to the unknown Lagrange multiplier is 

 Ψλ i
=

Φq
T

0
 

 
 

 

 
  (50) 

These results may be combined, using the notation  
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 J
q

q
0 ≡

+ − −L
NM

O
QP −

+ − −L
NM

O
QP −

L

N
MMM

O

Q
PPP

M M Q H Q J Q H

H J H 0

q q q q q q q

q q q q q q

+ h

h

2 A A A

2

a ha

a ha

ii
T

i ii
T

ii ii

�� � � �

�� � � �

� �

� �

b g c h{ }
c h{ }

Φ λ Φ

Φ Φ τ τ τ
 (51) 

where the integration Jacobian J0 is evaluated in the configuration ( , � )q qn n  from the 

beginning of the macro-step.  A quasi-Newton method is applied to iterate for the stage 

accelerations ��w i  and Lagrange multipliers λ i  as 

 
J0

1

∆
∆

∆
∆

��

�� �� ��

( )

( ) ( ) ( )

w

w w w

i
j

i
j

i
j

i
j

λ
Ψ

λ λ λ

( − )

i

j 1

i i i

L
NM
O
QP = −

L
NM
O
QP =
L
NM
O
QP +
L
NM
O
QP

−
 (52) 

At each stage of the algorithm, during each iteration for the solution ( �� , )w i iλ  of Eq. (48), 

the dependent stage positions are iteratively computed as 

 
Φ ∆ Φ

∆
u x x z

x x x
i i i

i i i

( ) ( )

( ) ( ) ( )

( , )A A

A A A

= −

= +

−

−

1

1
 (53) 

whereas the dependent stage velocities are computed as the solution of the linear system 

 Φ Φu vx z� �i i= −  (54) 

A challenge that the descriptor form method poses is the computation of the 

derivatives Mq q
��b g , Φq q

Tλd i , Qq
A , Qq�

A , τq , and τ �q .  Details about how these quantities are 

obtained for the case when the mechanical system is modeled using Cartesian coordinates 

with Euler parameters for body orientation are given by Serban and Haug (1998). 

5. Integration Formulas 

The descriptor form algorithm introduced in the previous Section is first 

implemented with a singly diagonal implicit Runge-Kutta (SDIRK) formula (Hairer and 

Wanner, 1996).  For SDIRK formulas, the associated Butcher’s tableau assumes the form 
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Table 1.  Butcher’s Tableau For SDIRK Formulas 

c1 γ  0 … … 0 

c2 a21 γ  … … 0 

… … … … … … 

cs  as1 as2  … … γ  

y1 b1 b2 … … bs  

�y1 �b1 �b2 … … �bs  

 

With these notations, the stage values wi  are computed as 

 w f t c h y h a wi n i n ij j
j

i

= + +
=

∑( , )
1

 (55) 

and the solution at time tn+1  is obtained as 

 y y h b wn n i i
i

s

+
=

= + ∑1
1

 (56) 

For SDIRK formulas, a i sii = =γ , , ,1… .  The matrix A = [ ]aij  is called the coefficient 

matrix of the formula, and for SDIRK methods it is nonsingular. 

The SDIRK formula sought for the descriptor form method should be L-stable 

(Hairer and Wanner, 1996), and of average order.  The L-stability attribute ensures good 

stability properties and order-preservation, even for extremely stiff problems (no 

stiffness-based order reduction).  Thus, the formula chosen is of order p = 4 , with s = 5 

stages.  This order is high enough to ensure good efficiency for tolerances typically used 

in simulations of engineering application, namely 10 2−  to 10 5− .  Since the coefficient 

matrix A  of the formula is nonsingular, if the condition  
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 b a i si si= =, , ,1…  (57) 

is satisfied, then the SDIRK formula becomes stiffly accurate (Hairer and Wanner, 1996).  

A stiffly-accurate formula is automatically A- and L-stable, and good stability properties 

and order preservation are guaranteed. 

Error control is based on adjusting the integration step-size such that an 

approximation of the local truncation error is always kept smaller than a user-prescribed 

tolerance.  The approximation of the local truncation error is obtained by means of a 

second numerical approximation of the solution that is provided by a different, usually 

lower order, Runge-Kutta formula.  To make the process efficient, the second Runge-

Kutta method is designed to use information generated during the process of finding the 

actual numerical solution with the original integration formula.  Typically this  translates 

in the second formula to using some or all of the stage values wi  computed by the 

original formula.  In this context, the last row of Table 1 contains the coefficients of the 

embedded formula.  Thus, a second approximation of the solution at time tn+1  is obtained 

as 

 � �y y h b wn n i i
i

s

+
=

= + ∑1
1

 (58) 

and the approximation of the local truncation error is given by y yn n+ +−1 1� .  

Componentwise, this error is kept smaller than a composite error tolerance sci , 

 | � |( ) ( )y y scn i n i i+ +− ≤1 1  (59) 

where sc Atol y y Rtoli i ni n i i= + ⋅+max(| |,| |)( )1 , and Atoli  and Rtoli  are user prescribed 

integration error tolerances.  As a measure of the error, the value 

 err
k

y y
sc

n i n i

ii

k

=
−F

HG
I
KJ

+ +

=
∑1 1 1

2

1

( ) ( )�
 (60) 
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is considered here.  This value is compared to 1, in order to find an optimal step-size.  

From asymptotic error behavior, err C hq≈ ⋅ +1 , and from 1 1≈ ⋅ +C hopt
q  (where 

q p p= min( , �) , with p  and �p  being the order of the formulas used), the optimal step-size 

is obtained as 

 h h
erropt

q
= FHG

I
KJ

+1
1

1
 (61) 

A safety factor fac  usually multiplies hopt , such that the error is acceptable at the 

end of the next step with high probability.  Further, h  is not allowed to increase or 

decrease too fast.  Thus, the value used for the new step-size is 

 h h fac errnew
q= ⋅ ⋅ +min( ,max( , ( ) ))( )facmax facmin 1 1 1  

If, at the end of the current step, err ≤ 1, the step is accepted.  The solution is then 

advanced with yn+1  and a new step is computed, with hnew  as step-size.  Otherwise, the 

step is rejected and computations for the current step are repeated with the new step-size 

hnew .  The maximal step-size increase facmax , usually chosen between 1.5 and 5, 

prevents the code from taking too large a step and contributes to its reliability.  When 

chosen too small, it may unnecessarily increase the computational work.  Finally, it is 

advisable to put facmax = 1 in steps after a step-rejection (Shampine and Watts, 1979). 

The stiffly-accurate, L-stable, 5 stage, order 4 singly diagonal Runge-Kutta 

formula implemented with the descriptor form method of Section 4 is defined in Table 2 

(Hairer and Wanner, 1996).  Step-size control is based on an order 3 embedded formula 

whose weights �bi  are provided as the last row in Table 2. 

For consistency with the descriptor form method presented in Section 4, the 

trapezoidal formula is presented as a 2 stage Runge-Kutta method.  The associated 

Butcher tableau is provided in Table 3.  Note that since the first row of coefficients are 

zeros, only one stage variable needs to be computed. 
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Table 2.  SDIRK Formula 

1/4 1/4 0 0 0 0 

3/4 1/2 1/4 0 0 0 

11/20 17/50 -1/25 1/4 0 0 

1/2 371/1360 -137/2720 15/544 1/4 0 

1 25/24 -49/48 125/16 -85/12 1/4 

y1 =  25/24 -49/48 125/16 -85/12 1/4 

�y1 =  59/48 -17/96 225/32 -85/12 0 

 

Table 3 Trapezoidal Formula 

0 0 0 

1 1/2 1/2 

y1 =  1/2 1/2 

�y1 =  0 1 

The trapezoidal formula is an order two, A-stable method.  The embedded 

formula used for step-size control is backward Euler.  Trapezoidal formula is often used, 

and it is analyzed in detail by Atkinson (1989).  The important thing to point out about it 

is that, although the condition in Eq. (57) is satisfied; i.e. the formula is stiffly accurate, 

this does not result in L-stability, since the coefficient matrix A  of the formula (see Table 

3) is singular (Hairer and Wanner, 1996). 
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6. Computational Algorithms 

Two computational algorithms have been developed.  They are based on the 

proposed implicit method for the solution of the differential-algebraic equations of 

multibody dynamics of Section 4 and the integration formulas of Section 5.  The first 

algorithm, denoted by InflSDIRK, is based on the five stage, order four, L-stable stiffly-

accurate SDIRK formula (Hairer and Wanner, 1996) provided in Table 2.  The second 

algorithm, denoted by InflTrap, uses the trapezoidal integration formula, whose 

coefficients are provided in Table 3.  Both algorithms use error control mechanisms 

based on step-size selection.  Pseudo-code for the InflSDIRK algorithm is provided in 

Table 4 and is discussed as follows. 

Step 1 initializes the simulation.  A consistent set of initial conditions is 

determined, simulation starting and ending times are defined, and an initial step-size is 

provided.  User set integration tolerances are read during Step 2.  At Step 3, the 

simulation loop is started and the code proceeds after saving the current system 

configuration.  This is the configuration that is used in the event of a rejected time step, in 

which case integration is restarted from Step 4 with a new step-size computed by the 

error control mechanism. 

Step 5 is a pivotal point of the implementation.  If the current time step has not 

been rejected, the integration Jacobian is computed as in Eq. (51).  Forming and factoring 

the integration Jacobian is the CPU intensive part of the code.  If the call to integration 

Jacobian computation comes after an unsuccessful time step, the step-size is changed, but 

all other matrix quantities appearing in the expression for the integration Jacobian are 

available from the previous call. 
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Table 4.  Pseudo-code for InflSDIRK 

 

1. Initialize Simulation 

2. Set Integration Tolerance 

3. While (t < tend) do 

4.  Setup Macro-step 

5.  Get Integration Jacobian 

6.  Sparse Factor Integration Jacobian 

7.  Do stage 1 to 5 

8.   Setup Stage 

9.   Do while (.NOT. converged) 

10.    Integrate 

11.    Recover Positions and Velocities 

12.    Evaluate Error Residual.  Compute Corrections 

13.    Verify Stopping Criteria 

14.    Correct Accelerations and Lagrange Multipliers 

15.   End do 

16.  End do 

17.  Check Accuracy.  Determine New Step-size 

18.  Check Partition 

19. End do 
 

Harwell (1995) sparse linear algebra routines are used to factor the integration 

Jacobian.  Since its sparsity pattern does not change during integration, the factorization 

process is efficient once Harwell routine ma48ad has analyzed its structure and a 
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factorization sequence has been determined.  Subsequent calls to integration Jacobian 

factorization use the much faster ma48bd factorization routine. 

Step 7 initiates a loop for evaluation of the stage values ��w i .  At Step 8, starting 

values for generalized accelerations and Lagrange multipliers are provided, and the 

iteration counter is reset to zero.  If during the iterative process this counter exceeds a 

limit value, the time step is deemed rejected, the integration step-size is halved, and the 

code proceeds to Step 4. 

The solution of the discretized non-linear algebraic equations is obtained during 

the loop that starts at Step 9 and ends at Step 15.  Based on the SDIRK formula of Table 

2 and Eqs. (30) and (31), accelerations are integrated in Step 10 to obtain generalized 

velocities, which are in turn integrated to obtain generalized positions.   In the numerical 

implementation, the dependent coordinates are also integrated such as to provide a good 

starting configuration for dependent position recovery in Eq. (53).  Dependent velocities 

are computed using the velocity kinematic constraint equation, as indicated in Eq. (54).  

The use of Eqs. (53) and (54) is the reason for which, although the discretization is done 

at the index 1 DAE (Hairer and Wanner, 1996) level, InflSDIRK is a state-space-based 

algorithm. 

At Step 12, corrections in generalized accelerations and Lagrange multipliers are 

computed, as in Eq. (52).  In Step 13, stopping criteria are checked.  If norms of the 

residual and correction are small enough, the iteration process is stopped.  Otherwise, the 

values of generalized accelerations and Lagrange multipliers are corrected, and the 

iterative process is continued. 

During Step 17, based on the embedded formula provided in Table 2, the 

accuracy of the numerical solution is assessed.  If accuracy is satisfactory, the 

configuration at the current grid point is accepted, and integration proceeds with a step-
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size that is obtained as a by-product of the accuracy check, as in Eq. (61).  Otherwise, 

with the newly computed step-size, the code proceeds to Step 4 to restart integration. 

During Step 18, the partitioning of the vector of generalized coordinates is 

checked and, if necessary, a new dependent/independent partitioning is determined.  A 

repartitioning is triggered by a large value of the condition number of the dependent sub-

Jacobian Φu .  Here, large means a condition number that exceeds by a factor of α = 125.  

the value of the first condition number associated with the current partition.  The value 

α = 125.  was determined as a result of numerical experiments.  The proposed strategy has 

not caused unjustified repartitioning requests, and has been reliable.  Computing the 

condition number of the dependent sub-Jacobian is inexpensive, since a factorization of 

this matrix is available after the last call to dependent position recovery.  Finally, Step 19 

is the end of the simulation loop. 

The pseudo-code for InflTrap is similar to that for InflSDIRK.  The only 

difference is in the number of stages of the formulas.  For InflTrap there is no need to 

have the loop starting at Step 7 and ending at Step 16. 

 

6.1. Description of Numerical Experiments 

In order to validate InflTrap and InflSDIRK, simulation results for a US Army 

High Mobility Multipurpose Wheeled Vehicle (HMMWV) model are compared with 

reference results obtained with a third implicit method.  The reference results are 

generated with an algorithm proposed by Negrut (1998), which is based on a first order 

reduction method, in conjunction with an SDIRK code of Hairer and Wanner (1996).  

Validation of the latter algorithm (denoted here by ForSDIRK) has been made by Negrut 

(1998). 
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The HMMWV in Fig. 1 is modeled using 14 bodies, as shown in Fig. 2.  The 

bodies of the model are described in Table 5.  A total of 98 generalized coordinates are 

used to model the vehicle.  The initial partitioning of coordinates was valid for 40 

seconds of simulation, and no repartitioning request was made. 

Figure 1.  US Army HMMWV 

 

 

 

 

 

 

 

 

                              Figure 2.  14 Body Model of HMMWV 
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Table 5.  HMMWV14 Model - Component Bodies 

 

No. Body  No. Body 

1 Chassis  8 Rack 

2 Left front lower control arm  9 Left rear lower control arm 

3 Left front upper control arm  10 Left rear upper control arm 

4 Left front wheel spindle  11 Left rear wheel spindle 

5 Right front lower control arm  12 Right rear lower control arm 

6 Right front upper control arm  13 Right rear upper control arm 

7 Right front wheel spindle  14 Right rear wheel spindle 
 

Figure 3(a) shows the original topology graph of HMMWV14.  Stiffness in the 

model is induced by replacing the revolute joints between upper control arms and chassis 

in the original model with spherical joints as shown in Fig. 3(b).  Each joint replacement 

results in two additional degrees of freedom.  For each such spherical joint, two 

translational-spring-damper-actuators (TSDA), acting in complementary directions, 

model bushings that control the extra degrees of freedom.  The number of degrees of 

freedom is 19.  The stiffness coefficient of each TSDA is 2 0 107. ⋅  N/m, while the 

damping coefficient is 2 0 106. ⋅  Ns/m.  Tires are modeled as vertical TSDA elements, 

with stiffness coefficient 296,325 N/m and damping coefficient 3,502 Ns/m. The 

dominant eigenvalue for this example has a small imaginary part, while the real part is of 

the order − ⋅2 6 105. . 
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Figure 3.  Topology Graph HMMWV14 

The vehicle is driven at 10 mph and hits a bump.  The bump’s shape is a half 

cylinder of diameter 0.1 m.  The steering rack is locked, to assure the vehicle drives 

straight.  This reduces the number of degrees of freedom to 18.  Figure 4 shows the time 

variation of chassis height.  The front wheels hit the bump at T ≈ 05.  s, and the rear 

wheels hit the bump at T ≈ 12.  s.  The length of the simulation is 5 seconds.  Toward the 

end of the simulation (after approximately 4 seconds), due to overdamping, the chassis 

height stabilizes at approximately z1 0 71= .  m.  

Error analysis is carried out for the first 2 seconds.  This time period is the most 

critical of the simulation, since after the wheels clear the bump, the vehicle does not 

experience any external excitation, and the motion stabilizes, due to suspension and 

bushing damping. 
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The reference solution was generated by imposing absolute and relative tolerances 

of 10-8 for positions and velocities.  Data generated by the algorithm ForSDIRK are used 

to compare results obtained using InflTrap and InflSDIRK for the same simulation. 

Figure 4. Chassis Height HMMWV14 

 

6.2 Comparison of Accuracy 

Suppose that n  time steps are taken during the current simulation, and the 

variable used for error analysis is denoted by e .  The grid points of the simulation are 

denoted by t t t t tinit n end= < < < =1 2 … , and results of the current simulation are obtained 

as ei , 1≤ ≤i n .  If N  is the number of time steps taken during the reference simulation, 

it is expected that N n>> .  Let T Tinit = <1 … < =T TN end  be the reference simulation time 

steps, and E j , 1≤ ≤j N , be the corresponding reference values.  For each i , 1≤ ≤i n , 

an integer r( )i  is defined such that T t Ti i ir r( ) ( )≤ ≤ +1 .  Based on reference data E ir( )−1 , 

E ir( ) , E ir( )+1 , and E ir( )+2 , spline cubic interpolation is used to generate an interpolated 
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value Ei
∗  at time ti .  If r( )i − ≤1 0 , the first four reference points are considered for 

interpolation, whereas if r( )i N+ ≥2 , the last four reference points are considered for 

interpolation.  The error at time step i  is defined as 

 ∆ i i iE e= −∗| |  (62) 

The infinity norm of the simulation error is defined as 

 ∆ ∆( ) maxk

i n i=
≤ ≤1

 (63) 

and it is obtained after setting the integration tolerance to 10 0k k, < .  Tables 6 and 7 

contain results of the error analysis for InflTrap and InflSDIRK, respectively.  The tables 

list in the first column the absolute and relative tolerances set for the simulation given as 

powers of 10; i.e., Atol Rtoli i
k= = 10 .  The same tolerances are imposed for both position 

and velocity.  The variable e  for which error analysis is carried out is the global x -

position of the chassis; i. e., the distance traveled by the vehicle.  Thus, the second 

column contains the value of ∆ ( )k  position, while the third column contains the largest 

error for the longitudinal velocity of the vehicle 

These results suggest that the algorithms perform well.  The error-control 

mechanisms of both algorithms are reliable, and accuracy requirements imposed are met 

in every case.  In fact, it can be observed that the step-size controllers are generally 

conservative; i. e., the accuracy obtained is approximately one order of magnitude better 

than requested.  Although this contributes to reliability of the overall algorithm, it can 

cause unnecessary computational effort, due to selection of smaller step-sizes than are 

necessary.  This conservative tendency of step-size selection is typical for very stiff 

problems, and has been explained by Shampine (1994) and mentioned by Hairer and 

Wanner (1996). 
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                Table 6.  InflTrap Errors                                   Table 7. InflSDIRK Errors 

Tol. 
(k) 

Max. Error 
Position 

Max. Error 
Velocity 

Tol.

(k) 

Max. Error 
Position 

Max. Error 
Velocity 

-2 0.00198767020 0.00329997828 -2 0.00065708165 0.00507871695 

-3 0.00041249616 0.00057043579 -3 0.00004549833 0.00207167794 

-4 0.00004450907 0.00006135104 -4 0.00000337006 0.00013460534 

-5 0.00000520341 0.00000641223 -5 0.00000069689 0.00004154424 

 

The plots in Figs. 5 and 6 are based on results presented in Tables 6 and 7.  The 

ordinate is the value k  of the tolerance with which the simulation is run.  On the abscissa 

are displayed the values of the simulation errors ∆ ( )k , both on a logarithmic scale.  It can 

be seen that the precision in positions is better, and that the gap between the accuracy of 

results at the position and velocity levels is wider for InflSDIRK. 

Figure 5.  Error Analysis Results for InflTrap 
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Figure 6.  Error Analysis Results for InflSDIRK 

6.3 Comparison of Efficiency 

In this section, the algorithms proposed are compared in terms of efficiency.  Four 

error tolerances are considered, ranging from 10-2 to 10-5, and CPU times are recorded for 

simulation time periods ranging from 1 s to 4 s.  The same absolute and relative 

tolerances are considered, for both position and velocity.  Timing results reported in 

Tables 8 and 9 are in CPU seconds.  The results are obtained on an SGI Onyx computer 

with R10000 processors. 

Table 8.  Timing Results InflTrap Table 9.  Timing results InflSDIRK 

TOL 10-2 10-3 10-4 10-5  TOL 10-2 10-3 10-4 10-5 

1 s 42 61 158 463  1 s 33 52 90 170 

2 s 79 155 420 1198  2 s 69 124 218 433 

3 s 92 189 524 1521  3 s 81 150 248 493 

4 s 100 206 552 1568  4 s 84 155 256 500 
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When compared to InflTrap, the algorithm InflSDIRK is more efficient, because 

of its better integration formula.  The step-size control mechanism for the SDIRK 

formula is well designed, and the simulation takes larger step-sizes.  This results in fewer 

costly matrix factorizations.  Furthermore, the order of the formula is 4, and its stability 

properties are very good (L-stable).  These attributes strongly recommend this algorithm, 

especially when very stiff models are integrated with medium to high accuracy 

requirements.  For low accuracy, the difference between the algorithms is not significant. 

To better see the impact of error tolerance on efficiency, in Fig. 7 is shown the 

CPU time necessary for each of the algorithms to complete a 2 second simulation.  The 

same model and the same simulation conditions are considered.  The absolute and 

relative tolerances are identical, assuming values between 10-2 and 10-5.  The same 

accuracy is imposed at position and velocity levels.  The slope of the timing curve for 

InflTrap is smaller than the slope of InflSDIRK.  This is a consequence of the different 

orders of the integration formulas used in these algorithms.  The results confirm the 

recommendation made earlier that a higher order formula should be used when more 

stringent accuracy is imposed on the simulation. 

Finally, in Fig. 8 is shown the variation of the integration step-size, for a four 

second simulation.  The error tolerance for this simulation is 10-3.  As noted earlier, at 

T = 05.  and T = 12.  the front and rear wheels hit the obstacle, respectively.  The error 

control mechanism senses the strong excitation induced in the system as a result of these 

events, and the step-size is decreased to ensure that accuracy requirements are met.  Once 

the vehicle clears the bump, transients damp out and the error controller increases the 

step-size.  Note that step-sizes for InflSDIRK are substantially larger than for InflTrap. 
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Figure 7.  CPU Time vs. Tolerance                      Figure 8.  Integration Step-Size History 

 

6.4 Implicit versus Explicit  Integration Comparison 

In order to see the impact of the proposed algorithms on simulation timing results, 

a comparison with an explicit algorithm is done in terms of efficiency.  The explicit 

algorithm used is denoted ExplDEABM.  It is based on the code DEABM from the suite 

DEPAC of explicit integrators of Shampine and Gordon (1975).  ExplDEABM is an 

algorithm based on a state-space reduction method, which uses the code DDEABM to 

integrate independent accelerations to obtain independent velocities and positions.  

Dependent positions and velocities are recovered using the position and velocity 

kinematic constraint equations of Eqs. (1) and (2), as indicated in Eqs. (53) and (54),  

respectively.  Efficient means for acceleration computation are used in ExplDEABM, as 

proposed by Serban, Negrut, Haug, and Potra (1997). 

Table 6 presents simulation timing results in CPU seconds for ExplDEABM, 

which can be compared with the results in Tables 8 and 9.  The first row contains the 

absolute and relative error tolerances imposed on both positions and velocities.  The first 

column contains simulation lengths in seconds. 
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Table 6.  Timing Results for ExplDEABM 

TOL 10-2 10-3 10-4 10-5 

1 s 3618 3641 3667 3663 

2 s 7276 7348 7287 7276 

3 s 10865 11122 10949 10965 

4 s 14480 14771 14630 14592 

 

The explicit algorithm requires significantly larger CPU times to complete 

simulations, independent of simulation duration and error tolerances.  Results obtained 

with ExplDEABM also conform to theoretical predictions.  For each imposed error 

tolerance, the algorithm required the same CPU time to complete a simulation run.  This 

is typical of situations in which explicit algorithms are limited to small step-sizes by 

stability considerations when integrating stiff systems.  Furthermore, for an imposed 

tolerance, the CPU time increases linearly with the simulation length.  Even after the 

vehicle clears the obstacle and there is no significant source of external excitation, the 

explicit algorithm is constrained to take very small steps, because otherwise it would 

become unstable. 

When compared to Figs. 8 and 9, the results obtained with ExplDEABM displayed 

in Figs. 10 and 11, support the observations made above.  The plot in Fig. 9 contains 

CPU times in seconds for the case in which a two second simulation is run with 

tolerances between 10-2 and 10-5, whereas Fig. 10 displays CPU times obtained running 1 

to 4 second simulations, with error tolerances (absolute and relative) set to 10-3 for both 

positions and velocities 
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Figure 9.  Different Tolerances                      Figure 10.  Different Simulation Lengths 

 

7. Conclusions 

The descriptor form implicit integration method proposed for the solution of stiff 

differential-algebraic equations of multibody dynamics is shown to be reliable and 

efficient.  Compared to previously used explicit integrators, a speed-up of approximately 

two orders of magnitude is obtained.  The algorithm, implemented with an order four, 

five stage, L-stable, stiffly accurate SDIRK formula, is shown to be superior to the 

algorithm based on the trapezoidal formula. 

Stopping criteria and sparse factorization of the integration Jacobian are issues 

that must be addressed in the future to improve reliability and efficiency of the proposed 

method.  Efficiency of the algorithms is expected to further improve once the current 

conservative error controller is adapted to use scaled local truncation errors for step-size 

selection. 
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