

1

Implicit Runge-Kutta Integration of the Equations of Multibody Dynamics
in Descriptor Form

E. J. Haug

Department of Mechanical Engineering

The University of Iowa

D. Negrut

Mechanical Dynamics, Inc.

C. Engstler

Tubingen University

Abstract. Implicit Runge-Kutta integration algorithms based on generalized

coordinate partitioning are presented for numerical solution of the differential-algebraic

equations of motion of multibody dynamics. Second order integration formulas are

derived from well known first order Runge-Kutta integrators, defining independent

generalized coordinates and their first time derivative as functions of independent

accelerations. The latter are determined as the solution of discretized equations of motion

that are obtained by inflating underlying state space, second order ordinary differential

equations of motion in independent coordinates to descriptor form. Dependent variables

in the formulation, including Lagrange multipliers, are determined using kinematic and

kinetic equations of multibody dynamics. The proposed method is tested with a large-

scale mechanical system that exhibits stiff behavior. Results show that the algorithm is

robust and has the capability to integrate the differential-algebraic equations of motion

for stiff multibody dynamic systems.

2

1. Introduction

In this paper, q = q q qk
T

1 2, ,..., denotes the vector of generalized coordinates

that define the state of a multibody system (Haug, 1989). For rigid bodies, the

generalized coordinates are Cartesian position coordinates and orientation Euler

parameters of body centroidal reference frames. Joints connecting the bodies of a

mechanical system restrict their relative motion and impose constraints on the

generalized coordinates. Kinematic constraints are expressed as algebraic expressions

involving generalized coordinates; i.e., expressions of the form

 Φ() (), (),..., ()q q q q≡ =Φ Φ Φ1 2 m
T 0 (1)

Differentiating Eq. (1) with respect to time yields the kinematic velocity equation,

 Φq q q 0b g� = (2)

where subscript denotes partial differentiation; i.e., Φq =
L
NMM
O
QPP

∂Φ
∂

i

jq
, and an over dot denotes

differentiation with respect to time. Differentiating Eq. (2) with respect to time yields the

kinematic acceleration equation,

 Φ Φq q q
q q q q q qb g d i b g�� � � , �= − ≡ τ (3)

Equations (1) through (3) characterize the admissible motion of the mechanical system.

The mechanical system configuration changes in time under the effect of applied

forces. The Lagrange multiplier form of the constrained equations of motion for the

mechanical system is (Haug, 1989)

 M q Q q qq()�� () (�q q+ =ΦT , , t)λ A (4)

3

where M q() is the system mass matrix, λ is the vector of Lagrange multipliers that

account for workless constraint forces, and Q q q,A , � tb g is the vector of generalized

applied forces.

Equations (1) through (4) comprise a system of differential-algebraic equations

(DAE). It is known (Petzold, 1982) that DAE are not ordinary differential equations

(ODE). While analytically satisfying Eqs. (1) and (4) assures that Eqs. (2) and (3) are

also satisfied, when the problem is solved numerically, this ceases to be the case. In

general, the task of obtaining a numerical solution of the DAE of Eqs. (1) through (4) is

substantially more difficult and prone to intense numerical computation than one of

solving ODE. For a review of the literature on numerical integration methods for

solution of the DAE of multibody dynamics, the reader is referred to a paper by Haug,

Negrut, and Iancu (1997).

2. Differential-Algebraic Equations of Multibody Dynamics

Equations (3) and (4) may be written in matrix form as

M q

0
q Q q q

q q
q

q

b g b g
b g

Φ
Φ λ τ

T AL
NMM

O
QPP
L
NM
O
QP =
L
NM

O
QP

�� , � ,
, �

t
 (5)

which is called the descriptor form of the equations of motion. Equations (1), (2), and (5)

must be satisfied by the numerical solution to be constructed. This system of differential-

algebraic equations may be treated by reducing it to a set of state-space ordinary

differential equations. This is most easily done by selecting an independent subset of the

generalized coordinates q and reducing the equations of motion to differential equations

in the independent coordinates.

In order to determine a partitioning of the generalized coordinates q into

dependent and independent coordinate vectors u and v, respectively, a set of consistent

4

generalized coordinates q0 ; i.e., satisfying Eq. (1), is first determined. In this

configuration, the constraint Jacobian matrix is evaluated and numerically factored, using

the Gauss-Jordan algorithm (Atkinson, 1989),

 Φq q0()→ Φu q0() Φv q0()[] (6)

The order of appearance of generalized coordinates associated with columns of the

resulting matrix yields a nonsingular sub-Jacobian with respect to u; i.e.,

 det Φu q0()()≠ 0 (7)

This can always be done if the constraint equations are independent (Haug, 1989).

Having partitioned the generalized coordinates, Eqs. (1) through (4) can be

rewritten in the associated partitioned form (Haug, 1989),

 M u v v M u v u u v Q u v u vvv vu
v
T v, , , , , ,b g b g b g b g�� �� � �+ + =Φ λ (8)

 M u v v M u v u u v Q u v u vuv uu
u
T u, , , , , ,b g b g b g b g�� �� � �+ + =Φ λ (9)

 Φ(u,v) = 0 (10)

 Φ Φu vu v u u v v 0(,) � (,) �+ = (11)

 Φ Φ τu vu v u u v v u v u v(,)�� (,)�� , , � , �+ = b g (12)

The condition of Eq. (7) and the implicit function theorem (Corwin and Szczarba,

1982) guarantee that Eq. (10) can be solved for u as a function of v,

 u = g(v) (13)

where the function g()q has as many continuous derivatives as does the constraint

function Φ()q . Thus, at an admissible configuration q0 , there exist neighborhoods U1 of

v0 and U2 of u0, and a function g : U1 → U2 such that for any v ∈U1 , Eq. (10) is

identically satisfied when u is given by Eq. (13). The analytical form of the function

5

g v() is not known, but g v()∗ can be evaluated by fixing v v= ∗ in Eq. (10) and iteratively

solving for u g v∗ ∗= () .

Using the partitioning of generalized coordinates induced by Eq. (6), the system

of DAE in Eqs. (8), (9), and (12) is reduced to a state-space ODE, through a succession

of steps that use information provided by Eqs. (10) and (11). Since the coefficient matrix

of �u in Eq. (11) is nonsingular, �u can be determined as a function of v and �v , where Eq.

(13) is used to eliminate explicit dependence on u. Next, Eq. (12) uniquely determines ��u

as a function of v, �v , and ��v , where results from Eqs. (11) and (13) are substituted. Since

the coefficient matrix of λ in Eq. (9) is nonsingular, λ can be determined uniquely as a

function of v, �v , and ��v , using previously derived results. Finally, each of the preceding

results is substituted into Eq. (8) to obtain an underlying state-space ODE in only the

independent generalized coordinates v (Haug, 1989),

 � ()�� � (�M v Q q qq = , , t) (14)

where

�

�

M M M M M

Q Q M Q M

vv vu uv uu

v vu u uu

= − − −

= − − −

− − −

− − −

Φ Φ Φ Φ Φ Φ

Φ τ Φ Φ Φ τ

u v v u u v

u v u u

1 1 1

1 1 1

T T

T T

c h
c h

 (15)

3. Implicit Runge-Kutta Integration Formulas

Implicit Runge-Kutta numerical integration methods (Hairer, Nørsett, and

Wanner, 1993) have been well developed for the solution of first ordinary differential

equations of the form

 �y = f t, yb g (16)

A broad range of Runge-Kutta integrators for this problem can be written in the form

6

 k f t c h y h a k i si n i n ij j
j

i

= + +
F
HG

I
KJ =

=
∑, , ,...,

1

1 (17)

 y y h b kn n i i
i

s

+
=

= + ∑1
1

 (18)

where tn is the current time step; yn is the approximate solution at tn ; aij , bi , and ci are

constants; s is the number of stages in integrating from tn to tn+1; ki are stage variables;

and h is the step-size.

Note that in all cases treated here, aij = 0 for i j< ; i.e., only diagonally implicit

Runge-Kutta (DIRK) methods (Hairer, Nørsett, and Wanner, 1993) with aii ≠ 0 are

considered. According to Eq. (17), in successive stages, ki appears on both sides of the

equation. Since f assumes a nonlinear form, an iterative method for solving for the

stage variable ki is required.

In order to make Runge-Kutta methods suitable for integration of the second order

differential-algebraic equations of multibody dynamics, the second argument on the right

of Eq. (17) is interpreted as an approximate solution at time t t c hi n i= + ; i.e.,

 z y h a zi n ij
j

i

j= +
=

∑
1

� (19)

Substituting Eq. (19) into Eq. (17) and regarding the left side as �zi , the equation can be

solved for �zi . Once all stages in Eq. (17) are solved for the associated �zi , the results are

substituted into Eq. (18) to obtain

 y y h b zn n i
i

s

i+
=

= + ∑1
1

� (20)

Applying Eq. (19) to integrate acceleration yields

 � � ��z y h a zi n ij
j

i

j= +
=

∑
1

 (21)

7

Extending the integration formula of Eq. (20) to second order,

 � � ��y y h b zn n i
i

s

i+
=

= + ∑1
1

 (22)

In order to enable solution of second order differential equations using Eqs. (20)

and (22), with ��zi as the solution variable in the discretized equations of motion, it is

helpful to substitute from Eq. (21) into Eq. (20), to obtain

y y h b y h a z

y h b y h b a z

y hy h b z

n n i
i

s

n ij j
j

i

n i
i

s

n i ij
i

s

j

s

j

n n j
j

s

j

+
= =

= ==

=

= + +
F
HG

I
KJ

= +
F
HG
I
KJ +

F
HG

I
KJ

= + +

∑ ∑

∑ ∑∑

∑

1
1 1

1

2

11

2

1

� ��

� ��

� ��

 (23)

where it is recalled that aij = 0 for j i> and bi
i

s

=
∑ =

1

1, and defining

 b b aj i ij
i

s
=

=
∑

1

 (24)

Likewise, Eq. (21) may be substituted into Eq. (19) to obtain

z y h a y h a z j i j

y h a y h a a z j i

y hc y h a z

i n ij
j

i

n j

j

n ij
j

i

n ij j
j

ss

n i n i

i

= + +
F
HG

I
KJ = =

= +
F
HG
I
KJ +

F
HG

I
KJ < <

= + +

= =

= ==

=

∑ ∑

∑ ∑∑

∑

1 1

1

2

11

2

1

1 1� �� , ,..., ,...,

� �� ,

� ��

A A
A

A
A

A

A A
A

A

A (25)

where the upper limits of the double summation in Eq. (25) are changed from l and j to

s , since l j i≤ ≤ and a jl = 0 for l j> , and the notation

8

 a a ail ij jl
j

s

=
=

∑
1

 (26)

is used. Note that if l i> , each term in the sum is zero and ail = 0.

The approach taken in this paper to integrating the differential-algebraic equations

of multibody dynamics is to insert Eqs. (21) and (25) for independent coordinates into the

state-space ordinary differential equation of Eq. (14). This approach is commonly used

with Newmark methods in structural dynamics (Hughes, 1987) and is applicable for

multibody dynamics (Haug, Iancu, and Negrut, 1997). The resulting equations are

equivalent to making the same substitution into the descriptor form of Eq. (5), using Eqs.

(10) and (11) to determine dependent coordinates and their first time derivatives. The

resulting discretized equations of motion involve both independent and dependent

accelerations and Lagrange multipliers as solution variables. They are solved

numerically and the Runge-Kutta algorithm of Eqs. (25), (21), (20), and (23) is used, just

as in the conventional first order implementation of Runge-Kutta methods.

4. Implicit Runge-Kutta Integration of the Equations of Multibody Dynamics

In order to apply implicit Runge-Kutta methods for integrating the equations of

multibody dynamics, it is instructive to first apply them to the underlying state-space

ordinary differential equation of Eq. (14). Substituting Eqs. (25) and (21) into Eq. (14),

at stage s of the Runge-Kutta method, yields

� � �� �� � � �� , � �� , ,M v v z z Q v v z v zn i n i

i

i n i n i n ij j n i
j

ii

hc h a hc h a h a t c h+ +
F
HG

I
KJ = + + + +
F
HG

I
KJ= ==

∑ ∑∑2

1

2

11
A A

A
A A

A

 i =1,...,s (27)

9

Since ��zi appears in all arguments of this nonlinear equation, iterative solution

methods are required. If the equation is satisfied, then dependent coordinates and their

first derivatives can be determined from the kinematic constraint equations and the

numerical integration processed can be continued.

Since the functions arising in Eq. (27), with �M()⋅ and �Q()⋅ given in Eq. (15), are

highly nonlinear and complex, it is not a simple matter to computate the Jacobian matrix

of the discretized equations of Eq. (27). Alternatively, the integration formulas may be

substituted into the inflated descriptor form of Eq. (5), to obtain an equivalent system of

equations. In order to make this substitution, however, all generalized coordinates and

their first time derivatives must be written in terms of the solution variables, in this case

the accelerations.

It is assumed that the generalized coordinates have been partitioned and reordered

so that q = uT ,vT[]T
; i.e.,

 v Pq 0 I q= ≡ , (28)

where P is a boolean matrix containing only zeros and unit values. Since P is a constant

matrix, � �v Pq= and �� ��v Pq= . Likewise, with w as the full vector of stage generalized

coordinates and z as independent stage coordinates,

 z = Pw (29)

Using this notation and recalling that the boolean matrix is constant, Eqs. (25) and

(21) may be written in the form

 z Pq Pq Pwi n i n i

i

hc h a= + +
=

∑� ��2

1
A

A
A (30)

 � � ��z Pq Pwi n ij j
j

i

h a= +
=

∑
1

 (31)

10

Substituting independent stage coordinates zi from Eq. (30) into Eq. (13) yields

dependent stage coordinates xi as

 x g g Pq Pq Pwi i i i

i

hc h a= = + +
F
HG

I
KJ=

∑zb g n n� ��2

1
A A

A
 (32)

Even though the function g()⋅ is not known explicitly, Eq. (32) shows clearly that

dependent stage coordinates are functions of stage accelerations, through the Runge-

Kutta integration formulas. From Eq. (11), dependent stage velocities may be written as

functions of independent stage velocities and, through use of Eq. (31), as functions of

stage accelerations,

 � � � � ��x z Hz HPq HPwu vi i i n ij j

i

h a= − ≡ = +−

=
∑Φ Φ1

1A
 (33)

where H is computed as the solution of the multiple right side system of linear equations

 ΦuH = −Φv (34)

Regarding all stage generalized coordinates and their first time derivatives to be

functions of accelerations, via Eqs. (30) through (33), the equations of motion can be

written in the form

 M w w w w w Q w w w wqi i i
T

i i i i i i i�� �� �� �� , � ��b gc h b gc h b g b gc h+ =Φ λ A (35)

Similarly, the kinematic acceleration equations of Eq. (3) may be written as

 Φ τq w w w w w w wi i i i i i i�� �� �� , � ��b gc h b g b gc h= (36)

Equations (35) and (36) emphasize the dependence of coefficients in the descriptor form

of the equations of motion on the unknown stage accelerations. In order to iteratively

solve Eqs. (35) and (36), all derivatives with respect to the unknown accelerations must

be determined.

From Eq. (30),

11

 z P
wii iih a
��

= 2 (37)

Differentiating Eq. (10) with respect to stage accelerations,

 Φ Φu vx z
w wi ii i�� ��

= − (38)

Solving for the desired derivatives and using Eq. (37),

x z Hz

HP
w w wu vi i i

ii

i i i

h a
�� �� ��

= −Φ Φ−1 =

= 2
 (39)

Combining these results yields

 w
HP
P

H
wi ii iii

h a h a
��

�= 2 2L
NM
O
QP = (40)

where

 ˆ H =
HP
P


 


  (41)

From Eq. (31),

 �
��

z P
wi iii

ha= (42)

Differentiating Eq. (11) with respect to stage accelerations and using Eqs. (40) and (42)

yields

Φ Φ Φ

Φ Φ

u v q q

v q q

x z w w

P w H

w w w
� � � �

� �
�� �� ��i i i i

ii ii i

i i i

ha h a

= − −

= − −

c h
c h2

 (43)

Solving for the desired derivatives yields

� � �

��
x HP w H

HP J
w u q qi ii ii i

ii ii

i
ha h a

ha h a

= −

+

−2 1

2

Φ Φc h
=

 (44)

12

where J is defined as the solution of

 Φ Φu q q
J w H= − � �

id i (45)

Combining Eqs. (42) and (44) yields

 � � �
��

w H J
wi ii iii

ha h a= + 2 (46)

where

 ˆ J =
J
0


 


  (47)

With the results of Eqs. (40) and (46), all derivatives required to iteratively solve

Eqs. (35) and (36) are available. To make explicit the derivative calculations required,

the discretized equations are written in descriptor form as

 Ψ
Φ λ

Φ τ
≡

+ −
−

L
NMM

O
QPP

=
M w w w Q w w

w w w w
0q

q

i i
T

i i
A

i i

i i i i

b g b g b g
b g b g

�� , �
�� , �

 (48)

Derivatives of Ψ with respect to stage accelerations ��w i are obtained, using the chain rule

of differentiation and Eqs. (40) and (46), as

 Ψ
Φ λ

Φ Φ τ τ
��

�

�

�� � � �

�� � � �w
q q q q q

q q q q q

M Mw Q H Q H J

w H H J
i

h a ha h a

h a ha h a

ii
T

i
A A

ii ii

ii ii ii

=
+ + − − +

+ − − +

L

N
MMM

O

Q
PPP

2 2

2 2

i

i

b g d i
d i

 (49)

More directly, the derivative of Ψ with respect to the unknown Lagrange multiplier is

 Ψλ i
=

Φq
T

0








 (50)

These results may be combined, using the notation

13

 J
q

q
0 ≡

+ − −L
NM

O
QP −

+ − −L
NM

O
QP −

L

N
MMM

O

Q
PPP

M M Q H Q J Q H

H J H 0

q q q q q q q

q q q q q q

+ h

h

2 A A A

2

a ha

a ha

ii
T

i ii
T

ii ii

�� � � �

�� � � �

� �

� �

b g c h{ }
c h{ }

Φ λ Φ

Φ Φ τ τ τ
 (51)

where the integration Jacobian J0 is evaluated in the configuration (, �)q qn n from the

beginning of the macro-step. A quasi-Newton method is applied to iterate for the stage

accelerations ��w i and Lagrange multipliers λ i as

J0

1

∆
∆

∆
∆

��

�� �� ��

()

() () ()

w

w w w

i
j

i
j

i
j

i
j

λ
Ψ

λ λ λ

(−)

i

j 1

i i i

L
NM
O
QP = −

L
NM
O
QP =
L
NM
O
QP +
L
NM
O
QP

−
 (52)

At each stage of the algorithm, during each iteration for the solution (�� ,)w i iλ of Eq. (48),

the dependent stage positions are iteratively computed as

Φ ∆ Φ

∆
u x x z

x x x
i i i

i i i

() ()

() () ()

(,)A A

A A A

= −

= +

−

−

1

1
 (53)

whereas the dependent stage velocities are computed as the solution of the linear system

 Φ Φu vx z� �i i= − (54)

A challenge that the descriptor form method poses is the computation of the

derivatives Mq q
��b g , Φq q

Tλd i , Qq
A , Qq�

A , τq , and τ �q . Details about how these quantities are

obtained for the case when the mechanical system is modeled using Cartesian coordinates

with Euler parameters for body orientation are given by Serban and Haug (1998).

5. Integration Formulas

The descriptor form algorithm introduced in the previous Section is first

implemented with a singly diagonal implicit Runge-Kutta (SDIRK) formula (Hairer and

Wanner, 1996). For SDIRK formulas, the associated Butcher’s tableau assumes the form

14

Table 1. Butcher’s Tableau For SDIRK Formulas

c1 γ 0 … … 0

c2 a21 γ … … 0

… … … … … …

cs as1 as2 … … γ

y1 b1 b2 … … bs

�y1 �b1 �b2 … … �bs

With these notations, the stage values wi are computed as

 w f t c h y h a wi n i n ij j
j

i

= + +
=

∑(,)
1

 (55)

and the solution at time tn+1 is obtained as

 y y h b wn n i i
i

s

+
=

= + ∑1
1

 (56)

For SDIRK formulas, a i sii = =γ , , ,1… . The matrix A = []aij is called the coefficient

matrix of the formula, and for SDIRK methods it is nonsingular.

The SDIRK formula sought for the descriptor form method should be L-stable

(Hairer and Wanner, 1996), and of average order. The L-stability attribute ensures good

stability properties and order-preservation, even for extremely stiff problems (no

stiffness-based order reduction). Thus, the formula chosen is of order p = 4 , with s = 5

stages. This order is high enough to ensure good efficiency for tolerances typically used

in simulations of engineering application, namely 10 2− to 10 5− . Since the coefficient

matrix A of the formula is nonsingular, if the condition

15

 b a i si si= =, , ,1… (57)

is satisfied, then the SDIRK formula becomes stiffly accurate (Hairer and Wanner, 1996).

A stiffly-accurate formula is automatically A- and L-stable, and good stability properties

and order preservation are guaranteed.

Error control is based on adjusting the integration step-size such that an

approximation of the local truncation error is always kept smaller than a user-prescribed

tolerance. The approximation of the local truncation error is obtained by means of a

second numerical approximation of the solution that is provided by a different, usually

lower order, Runge-Kutta formula. To make the process efficient, the second Runge-

Kutta method is designed to use information generated during the process of finding the

actual numerical solution with the original integration formula. Typically this translates

in the second formula to using some or all of the stage values wi computed by the

original formula. In this context, the last row of Table 1 contains the coefficients of the

embedded formula. Thus, a second approximation of the solution at time tn+1 is obtained

as

 � �y y h b wn n i i
i

s

+
=

= + ∑1
1

 (58)

and the approximation of the local truncation error is given by y yn n+ +−1 1� .

Componentwise, this error is kept smaller than a composite error tolerance sci ,

 | � |() ()y y scn i n i i+ +− ≤1 1 (59)

where sc Atol y y Rtoli i ni n i i= + ⋅+max(| |,| |)()1 , and Atoli and Rtoli are user prescribed

integration error tolerances. As a measure of the error, the value

 err
k

y y
sc

n i n i

ii

k

=
−F

HG
I
KJ

+ +

=
∑1 1 1

2

1

() ()�
 (60)

16

is considered here. This value is compared to 1, in order to find an optimal step-size.

From asymptotic error behavior, err C hq≈ ⋅ +1 , and from 1 1≈ ⋅ +C hopt
q (where

q p p= min(, �) , with p and �p being the order of the formulas used), the optimal step-size

is obtained as

 h h
erropt

q
= FHG

I
KJ

+1
1

1
 (61)

A safety factor fac usually multiplies hopt , such that the error is acceptable at the

end of the next step with high probability. Further, h is not allowed to increase or

decrease too fast. Thus, the value used for the new step-size is

 h h fac errnew
q= ⋅ ⋅ +min(,max(, ()))()facmax facmin 1 1 1

If, at the end of the current step, err ≤ 1, the step is accepted. The solution is then

advanced with yn+1 and a new step is computed, with hnew as step-size. Otherwise, the

step is rejected and computations for the current step are repeated with the new step-size

hnew . The maximal step-size increase facmax , usually chosen between 1.5 and 5,

prevents the code from taking too large a step and contributes to its reliability. When

chosen too small, it may unnecessarily increase the computational work. Finally, it is

advisable to put facmax = 1 in steps after a step-rejection (Shampine and Watts, 1979).

The stiffly-accurate, L-stable, 5 stage, order 4 singly diagonal Runge-Kutta

formula implemented with the descriptor form method of Section 4 is defined in Table 2

(Hairer and Wanner, 1996). Step-size control is based on an order 3 embedded formula

whose weights �bi are provided as the last row in Table 2.

For consistency with the descriptor form method presented in Section 4, the

trapezoidal formula is presented as a 2 stage Runge-Kutta method. The associated

Butcher tableau is provided in Table 3. Note that since the first row of coefficients are

zeros, only one stage variable needs to be computed.

17

Table 2. SDIRK Formula

1/4 1/4 0 0 0 0

3/4 1/2 1/4 0 0 0

11/20 17/50 -1/25 1/4 0 0

1/2 371/1360 -137/2720 15/544 1/4 0

1 25/24 -49/48 125/16 -85/12 1/4

y1 = 25/24 -49/48 125/16 -85/12 1/4

�y1 = 59/48 -17/96 225/32 -85/12 0

Table 3 Trapezoidal Formula

0 0 0

1 1/2 1/2

y1 = 1/2 1/2

�y1 = 0 1

The trapezoidal formula is an order two, A-stable method. The embedded

formula used for step-size control is backward Euler. Trapezoidal formula is often used,

and it is analyzed in detail by Atkinson (1989). The important thing to point out about it

is that, although the condition in Eq. (57) is satisfied; i.e. the formula is stiffly accurate,

this does not result in L-stability, since the coefficient matrix A of the formula (see Table

3) is singular (Hairer and Wanner, 1996).

18

6. Computational Algorithms

Two computational algorithms have been developed. They are based on the

proposed implicit method for the solution of the differential-algebraic equations of

multibody dynamics of Section 4 and the integration formulas of Section 5. The first

algorithm, denoted by InflSDIRK, is based on the five stage, order four, L-stable stiffly-

accurate SDIRK formula (Hairer and Wanner, 1996) provided in Table 2. The second

algorithm, denoted by InflTrap, uses the trapezoidal integration formula, whose

coefficients are provided in Table 3. Both algorithms use error control mechanisms

based on step-size selection. Pseudo-code for the InflSDIRK algorithm is provided in

Table 4 and is discussed as follows.

Step 1 initializes the simulation. A consistent set of initial conditions is

determined, simulation starting and ending times are defined, and an initial step-size is

provided. User set integration tolerances are read during Step 2. At Step 3, the

simulation loop is started and the code proceeds after saving the current system

configuration. This is the configuration that is used in the event of a rejected time step, in

which case integration is restarted from Step 4 with a new step-size computed by the

error control mechanism.

Step 5 is a pivotal point of the implementation. If the current time step has not

been rejected, the integration Jacobian is computed as in Eq. (51). Forming and factoring

the integration Jacobian is the CPU intensive part of the code. If the call to integration

Jacobian computation comes after an unsuccessful time step, the step-size is changed, but

all other matrix quantities appearing in the expression for the integration Jacobian are

available from the previous call.

19

Table 4. Pseudo-code for InflSDIRK

1. Initialize Simulation

2. Set Integration Tolerance

3. While (t < tend) do

4. Setup Macro-step

5. Get Integration Jacobian

6. Sparse Factor Integration Jacobian

7. Do stage 1 to 5

8. Setup Stage

9. Do while (.NOT. converged)

10. Integrate

11. Recover Positions and Velocities

12. Evaluate Error Residual. Compute Corrections

13. Verify Stopping Criteria

14. Correct Accelerations and Lagrange Multipliers

15. End do

16. End do

17. Check Accuracy. Determine New Step-size

18. Check Partition

19. End do

Harwell (1995) sparse linear algebra routines are used to factor the integration

Jacobian. Since its sparsity pattern does not change during integration, the factorization

process is efficient once Harwell routine ma48ad has analyzed its structure and a

20

factorization sequence has been determined. Subsequent calls to integration Jacobian

factorization use the much faster ma48bd factorization routine.

Step 7 initiates a loop for evaluation of the stage values ��w i . At Step 8, starting

values for generalized accelerations and Lagrange multipliers are provided, and the

iteration counter is reset to zero. If during the iterative process this counter exceeds a

limit value, the time step is deemed rejected, the integration step-size is halved, and the

code proceeds to Step 4.

The solution of the discretized non-linear algebraic equations is obtained during

the loop that starts at Step 9 and ends at Step 15. Based on the SDIRK formula of Table

2 and Eqs. (30) and (31), accelerations are integrated in Step 10 to obtain generalized

velocities, which are in turn integrated to obtain generalized positions. In the numerical

implementation, the dependent coordinates are also integrated such as to provide a good

starting configuration for dependent position recovery in Eq. (53). Dependent velocities

are computed using the velocity kinematic constraint equation, as indicated in Eq. (54).

The use of Eqs. (53) and (54) is the reason for which, although the discretization is done

at the index 1 DAE (Hairer and Wanner, 1996) level, InflSDIRK is a state-space-based

algorithm.

At Step 12, corrections in generalized accelerations and Lagrange multipliers are

computed, as in Eq. (52). In Step 13, stopping criteria are checked. If norms of the

residual and correction are small enough, the iteration process is stopped. Otherwise, the

values of generalized accelerations and Lagrange multipliers are corrected, and the

iterative process is continued.

During Step 17, based on the embedded formula provided in Table 2, the

accuracy of the numerical solution is assessed. If accuracy is satisfactory, the

configuration at the current grid point is accepted, and integration proceeds with a step-

21

size that is obtained as a by-product of the accuracy check, as in Eq. (61). Otherwise,

with the newly computed step-size, the code proceeds to Step 4 to restart integration.

During Step 18, the partitioning of the vector of generalized coordinates is

checked and, if necessary, a new dependent/independent partitioning is determined. A

repartitioning is triggered by a large value of the condition number of the dependent sub-

Jacobian Φu . Here, large means a condition number that exceeds by a factor of α = 125.

the value of the first condition number associated with the current partition. The value

α = 125. was determined as a result of numerical experiments. The proposed strategy has

not caused unjustified repartitioning requests, and has been reliable. Computing the

condition number of the dependent sub-Jacobian is inexpensive, since a factorization of

this matrix is available after the last call to dependent position recovery. Finally, Step 19

is the end of the simulation loop.

The pseudo-code for InflTrap is similar to that for InflSDIRK. The only

difference is in the number of stages of the formulas. For InflTrap there is no need to

have the loop starting at Step 7 and ending at Step 16.

6.1. Description of Numerical Experiments

In order to validate InflTrap and InflSDIRK, simulation results for a US Army

High Mobility Multipurpose Wheeled Vehicle (HMMWV) model are compared with

reference results obtained with a third implicit method. The reference results are

generated with an algorithm proposed by Negrut (1998), which is based on a first order

reduction method, in conjunction with an SDIRK code of Hairer and Wanner (1996).

Validation of the latter algorithm (denoted here by ForSDIRK) has been made by Negrut

(1998).

22

The HMMWV in Fig. 1 is modeled using 14 bodies, as shown in Fig. 2. The

bodies of the model are described in Table 5. A total of 98 generalized coordinates are

used to model the vehicle. The initial partitioning of coordinates was valid for 40

seconds of simulation, and no repartitioning request was made.

Figure 1. US Army HMMWV

 Figure 2. 14 Body Model of HMMWV

23

Table 5. HMMWV14 Model - Component Bodies

No. Body No. Body

1 Chassis 8 Rack

2 Left front lower control arm 9 Left rear lower control arm

3 Left front upper control arm 10 Left rear upper control arm

4 Left front wheel spindle 11 Left rear wheel spindle

5 Right front lower control arm 12 Right rear lower control arm

6 Right front upper control arm 13 Right rear upper control arm

7 Right front wheel spindle 14 Right rear wheel spindle

Figure 3(a) shows the original topology graph of HMMWV14. Stiffness in the

model is induced by replacing the revolute joints between upper control arms and chassis

in the original model with spherical joints as shown in Fig. 3(b). Each joint replacement

results in two additional degrees of freedom. For each such spherical joint, two

translational-spring-damper-actuators (TSDA), acting in complementary directions,

model bushings that control the extra degrees of freedom. The number of degrees of

freedom is 19. The stiffness coefficient of each TSDA is 2 0 107. ⋅ N/m, while the

damping coefficient is 2 0 106. ⋅ Ns/m. Tires are modeled as vertical TSDA elements,

with stiffness coefficient 296,325 N/m and damping coefficient 3,502 Ns/m. The

dominant eigenvalue for this example has a small imaginary part, while the real part is of

the order − ⋅2 6 105. .

24

Figure 3. Topology Graph HMMWV14

The vehicle is driven at 10 mph and hits a bump. The bump’s shape is a half

cylinder of diameter 0.1 m. The steering rack is locked, to assure the vehicle drives

straight. This reduces the number of degrees of freedom to 18. Figure 4 shows the time

variation of chassis height. The front wheels hit the bump at T ≈ 05. s, and the rear

wheels hit the bump at T ≈ 12. s. The length of the simulation is 5 seconds. Toward the

end of the simulation (after approximately 4 seconds), due to overdamping, the chassis

height stabilizes at approximately z1 0 71= . m.

Error analysis is carried out for the first 2 seconds. This time period is the most

critical of the simulation, since after the wheels clear the bump, the vehicle does not

experience any external excitation, and the motion stabilizes, due to suspension and

bushing damping.

25

The reference solution was generated by imposing absolute and relative tolerances

of 10-8 for positions and velocities. Data generated by the algorithm ForSDIRK are used

to compare results obtained using InflTrap and InflSDIRK for the same simulation.

Figure 4. Chassis Height HMMWV14

6.2 Comparison of Accuracy

Suppose that n time steps are taken during the current simulation, and the

variable used for error analysis is denoted by e . The grid points of the simulation are

denoted by t t t t tinit n end= < < < =1 2 … , and results of the current simulation are obtained

as ei , 1≤ ≤i n . If N is the number of time steps taken during the reference simulation,

it is expected that N n>> . Let T Tinit = <1 … < =T TN end be the reference simulation time

steps, and E j , 1≤ ≤j N , be the corresponding reference values. For each i , 1≤ ≤i n ,

an integer r()i is defined such that T t Ti i ir r() ()≤ ≤ +1 . Based on reference data E ir()−1 ,

E ir() , E ir()+1 , and E ir()+2 , spline cubic interpolation is used to generate an interpolated

0.68

0.7

0.72

0.74

0.76

0 1 2 3 4 5

Time [s]

C
ha

ss
is

 H
ei

gh
t [

m
]

26

value Ei
∗ at time ti . If r()i − ≤1 0 , the first four reference points are considered for

interpolation, whereas if r()i N+ ≥2 , the last four reference points are considered for

interpolation. The error at time step i is defined as

 ∆ i i iE e= −∗| | (62)

The infinity norm of the simulation error is defined as

 ∆ ∆() maxk

i n i=
≤ ≤1

 (63)

and it is obtained after setting the integration tolerance to 10 0k k, < . Tables 6 and 7

contain results of the error analysis for InflTrap and InflSDIRK, respectively. The tables

list in the first column the absolute and relative tolerances set for the simulation given as

powers of 10; i.e., Atol Rtoli i
k= = 10 . The same tolerances are imposed for both position

and velocity. The variable e for which error analysis is carried out is the global x -

position of the chassis; i. e., the distance traveled by the vehicle. Thus, the second

column contains the value of ∆ ()k position, while the third column contains the largest

error for the longitudinal velocity of the vehicle

These results suggest that the algorithms perform well. The error-control

mechanisms of both algorithms are reliable, and accuracy requirements imposed are met

in every case. In fact, it can be observed that the step-size controllers are generally

conservative; i. e., the accuracy obtained is approximately one order of magnitude better

than requested. Although this contributes to reliability of the overall algorithm, it can

cause unnecessary computational effort, due to selection of smaller step-sizes than are

necessary. This conservative tendency of step-size selection is typical for very stiff

problems, and has been explained by Shampine (1994) and mentioned by Hairer and

Wanner (1996).

27

 Table 6. InflTrap Errors Table 7. InflSDIRK Errors

Tol.
(k)

Max. Error
Position

Max. Error
Velocity

Tol.

(k)

Max. Error
Position

Max. Error
Velocity

-2 0.00198767020 0.00329997828 -2 0.00065708165 0.00507871695

-3 0.00041249616 0.00057043579 -3 0.00004549833 0.00207167794

-4 0.00004450907 0.00006135104 -4 0.00000337006 0.00013460534

-5 0.00000520341 0.00000641223 -5 0.00000069689 0.00004154424

The plots in Figs. 5 and 6 are based on results presented in Tables 6 and 7. The

ordinate is the value k of the tolerance with which the simulation is run. On the abscissa

are displayed the values of the simulation errors ∆ ()k , both on a logarithmic scale. It can

be seen that the precision in positions is better, and that the gap between the accuracy of

results at the position and velocity levels is wider for InflSDIRK.

Figure 5. Error Analysis Results for InflTrap

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

-5 -4 -3 -2

k

M
ax

. E
rr

or

Position
Velocity

28

Figure 6. Error Analysis Results for InflSDIRK

6.3 Comparison of Efficiency

In this section, the algorithms proposed are compared in terms of efficiency. Four

error tolerances are considered, ranging from 10-2 to 10-5, and CPU times are recorded for

simulation time periods ranging from 1 s to 4 s. The same absolute and relative

tolerances are considered, for both position and velocity. Timing results reported in

Tables 8 and 9 are in CPU seconds. The results are obtained on an SGI Onyx computer

with R10000 processors.

Table 8. Timing Results InflTrap Table 9. Timing results InflSDIRK

TOL 10-2 10-3 10-4 10-5 TOL 10-2 10-3 10-4 10-5

1 s 42 61 158 463 1 s 33 52 90 170

2 s 79 155 420 1198 2 s 69 124 218 433

3 s 92 189 524 1521 3 s 81 150 248 493

4 s 100 206 552 1568 4 s 84 155 256 500

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

-5 -4 -3 -2

Tolerance Set

M
ax

. E
rr

or

Position
Velocity

29

When compared to InflTrap, the algorithm InflSDIRK is more efficient, because

of its better integration formula. The step-size control mechanism for the SDIRK

formula is well designed, and the simulation takes larger step-sizes. This results in fewer

costly matrix factorizations. Furthermore, the order of the formula is 4, and its stability

properties are very good (L-stable). These attributes strongly recommend this algorithm,

especially when very stiff models are integrated with medium to high accuracy

requirements. For low accuracy, the difference between the algorithms is not significant.

To better see the impact of error tolerance on efficiency, in Fig. 7 is shown the

CPU time necessary for each of the algorithms to complete a 2 second simulation. The

same model and the same simulation conditions are considered. The absolute and

relative tolerances are identical, assuming values between 10-2 and 10-5. The same

accuracy is imposed at position and velocity levels. The slope of the timing curve for

InflTrap is smaller than the slope of InflSDIRK. This is a consequence of the different

orders of the integration formulas used in these algorithms. The results confirm the

recommendation made earlier that a higher order formula should be used when more

stringent accuracy is imposed on the simulation.

Finally, in Fig. 8 is shown the variation of the integration step-size, for a four

second simulation. The error tolerance for this simulation is 10-3. As noted earlier, at

T = 05. and T = 12. the front and rear wheels hit the obstacle, respectively. The error

control mechanism senses the strong excitation induced in the system as a result of these

events, and the step-size is decreased to ensure that accuracy requirements are met. Once

the vehicle clears the bump, transients damp out and the error controller increases the

step-size. Note that step-sizes for InflSDIRK are substantially larger than for InflTrap.

30

Figure 7. CPU Time vs. Tolerance Figure 8. Integration Step-Size History

6.4 Implicit versus Explicit Integration Comparison

In order to see the impact of the proposed algorithms on simulation timing results,

a comparison with an explicit algorithm is done in terms of efficiency. The explicit

algorithm used is denoted ExplDEABM. It is based on the code DEABM from the suite

DEPAC of explicit integrators of Shampine and Gordon (1975). ExplDEABM is an

algorithm based on a state-space reduction method, which uses the code DDEABM to

integrate independent accelerations to obtain independent velocities and positions.

Dependent positions and velocities are recovered using the position and velocity

kinematic constraint equations of Eqs. (1) and (2), as indicated in Eqs. (53) and (54),

respectively. Efficient means for acceleration computation are used in ExplDEABM, as

proposed by Serban, Negrut, Haug, and Potra (1997).

Table 6 presents simulation timing results in CPU seconds for ExplDEABM,

which can be compared with the results in Tables 8 and 9. The first row contains the

absolute and relative error tolerances imposed on both positions and velocities. The first

column contains simulation lengths in seconds.

10

100

1000

10000

-5 -4 -3 -2

Tolerance

C
PU

 T
im

e
[s

]
InflTrap
InflSDIRK

0

0.02

0.04

0.06

0.08

0 1 2 3 4

Simulation Time [s]

In
te

gr
at

io
n

St
ep

-S
iz

e
[s

]

InflSDIRK
InflTrap

31

Table 6. Timing Results for ExplDEABM

TOL 10-2 10-3 10-4 10-5

1 s 3618 3641 3667 3663

2 s 7276 7348 7287 7276

3 s 10865 11122 10949 10965

4 s 14480 14771 14630 14592

The explicit algorithm requires significantly larger CPU times to complete

simulations, independent of simulation duration and error tolerances. Results obtained

with ExplDEABM also conform to theoretical predictions. For each imposed error

tolerance, the algorithm required the same CPU time to complete a simulation run. This

is typical of situations in which explicit algorithms are limited to small step-sizes by

stability considerations when integrating stiff systems. Furthermore, for an imposed

tolerance, the CPU time increases linearly with the simulation length. Even after the

vehicle clears the obstacle and there is no significant source of external excitation, the

explicit algorithm is constrained to take very small steps, because otherwise it would

become unstable.

When compared to Figs. 8 and 9, the results obtained with ExplDEABM displayed

in Figs. 10 and 11, support the observations made above. The plot in Fig. 9 contains

CPU times in seconds for the case in which a two second simulation is run with

tolerances between 10-2 and 10-5, whereas Fig. 10 displays CPU times obtained running 1

to 4 second simulations, with error tolerances (absolute and relative) set to 10-3 for both

positions and velocities

32

Figure 9. Different Tolerances Figure 10. Different Simulation Lengths

7. Conclusions

The descriptor form implicit integration method proposed for the solution of stiff

differential-algebraic equations of multibody dynamics is shown to be reliable and

efficient. Compared to previously used explicit integrators, a speed-up of approximately

two orders of magnitude is obtained. The algorithm, implemented with an order four,

five stage, L-stable, stiffly accurate SDIRK formula, is shown to be superior to the

algorithm based on the trapezoidal formula.

Stopping criteria and sparse factorization of the integration Jacobian are issues

that must be addressed in the future to improve reliability and efficiency of the proposed

method. Efficiency of the algorithms is expected to further improve once the current

conservative error controller is adapted to use scaled local truncation errors for step-size

selection.

6000

6400

6800

7200

7600

8000

-5 -4 -3 -2

Tolerance

C
PU

 T
im

es
 [s

]

ExplDEABM

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4

Simulation Length

C
PU

 T
im

e
[s

]

ExplDEABM

33

References

Atkinson, K. E., An Introduction to Numerical Analysis, New York: John Wiley & Sons,
2nd Edition, 1989

Corwin, L., J., Szczarba, R., H., Multivariable Calculus, New York: Marcel Dekker, 1982

Hairer, E., Nørsett S., P., Wanner, G., Solving Ordinary Differential Equations I.
Nonstiff Problems, Berlin Heidelberg New York: Springer-Verlag, 1993

Hairer, E., Wanner, G., Solving Ordinary Differential Equations II. Stiff and
Differential-Algebraic Problems, Berlin Heidelberg New York: Springer-Verlag,
1996

Harwell subroutine library – Specifications, AEATechology, Harwell Laboratory,
Oxfordshire, England, 1995

Haug, E., J., Computer-Aided Kinematics and Dynamics of Mechanical Systems. Boston,
London, Sydney, Toronto: Allyn and Bacon, 1989

Haug, E., J., Iancu, M., Negrut, D., “Implicit Integration of the Equations of Multibody
Dynamics in Descriptor Form,” in Advances in Design Automation-Proceedings of
the ASME Design Automation Conference, Sacramento, 1997

Haug E., J., Negrut, D., Iancu, M., “A State-Space Based Implicit Integration Algorithm
for Differential-Algebraic Equations of Multibody Dynamics,” Mech. Struct.&Mach.,
vol. 25(3), pp. 311-334, 1997

Hughes, T., J., The Finite Element Method, Prentice-Hall, Englewood Cliffs, New Jersey,
1987

Negrut, D., “On the Implicit Integration of Differential-Algebraic Equations of
Multibody Dynamics”, Ph.D. Thesis, The University of Iowa, 1998

Petzold, L., R., “Differential/Algebraic Equations are not ODE’s”, SIAM Journal of
Scientific and Statistical Computing 3(3), pp. 367-384, 1982

Serban, R., and Haug, E.J., “Kinematic and Kinetic Derivatives in Multibody System
Analysis,” Mechanics of Structures and Machines, Vol. 26, No. 2, pp. 145-173,
1998.

Serban, R., Negrut, D., Haug, E. J., Potra, F. A., "A Topology Based Approach for
Exploiting Sparsity in Multibody Dynamics in Cartesian Formulation,” Mech.
Struct.&Mach., vol. 25(3), pp. 379-396, 1997

Shampine, L. ,F., Numerical Solution of Ordinary Differential Equations, Chapmann &
Hall, New York, 1994

Shampine, L., F., Gordon, M., K., Computer Solution of Ordinary Differential Equations.
The Initial Value Problem, Freeman and Company, San Francisco, 1975

34

Shampine, L. F., Watts, H. A., “The art of writing a Runge-Kutta code.II,” Appl. Math.
Comput., vol. 5, pp. 93-121, 1979

