A TOPOLOGY BASED APPROACH FOR
EXPLOITING SPARSITY IN MULTIBODY DYNAMICS.
JOINT FORMULATION

Dan Negrut ¥, Radu Serban T, Florian A. Potra *

January, 1997

Abstract

In the present paper we are concerned with taking advantage of the problem
structure in multibody dynamics simulation when the mechanical system is modeled
using a minimal set of generalized coordinates. We show that the inertia matrix
associated with any open or closed loop mechanism is positive definite by finding a
simple mathematical expression for the quadratic form expressing the kinetic energy in
an associated state space. Based on this result an algorithm which efficiently solves for
the second time derivatives of the generalized coordinates is presented. Significant
speed-ups are expected due both to the no fill-in factorization of the composite inertia

matrix technique and to the degree of parallelism attainable with the new algorithm.

¥ Department of Mechanical Engineering, The University of lowa, lowa City, IA 52242
f  Department of Mathematics and Computer Science, The University of lowa, lowa City, 1A 52242



1 Introduction

In terms of the number of variables used to model a rigid multibody system we have

the following two extreme approaches:

. the descriptor form, or the cartesian representation, or the body
representation, in which the mechanical system is represented using for each
body a set of coordinates specifying the position of a particular point on each
body, along with a set of parameters specifying the orientation of that body
with respect to a global reference frame

o the joint representation, or the recursive formulation, in which the
mechanical system is represented in terms of a minimal set of generalized
coordinates

As mentioned in [9] each approach has its advantages and drawbacks. The descriptor
form is easier to understand, and can be readily formalized. However, when efficiency is
an important issue the joint representation of a mechanical system outperforms the
alternative descriptor form. In this context, the demands of real time simulation of
mechanical systems comprising a large number of subsystems and bodies, like a car, or
a tractor semi-trailer, stimulated the use of joint representation (JR) approach as an
alternative way of modelling a mechanical system. The JR approach improves

efficiency at the cost of a more difficult formalism and implementation of the method.

The improved efficiency of the JR approach is due to 2 factors. First, when a
mechanical system is modeled using this formulation the dimension of the problem is
smaller. Then, from a mathematical standpoint, the complexity of the problem is
reduced. For instance, in the case of open loop mechanisms one does not have to deal
with DAEs and the stabilization embedded in most DAE integration algorithms. This

latter aspect hurts the efficiency of the cartesian formulation.

The treatment of index 3 DAEs [1] as they arise in multibody dynamics is difficult.
The interested reader is referred to [1],[2],[4],[10],[12] for an account of the ideas
underlying the treatment of DAESs’. In this context, not having to deal with DAEs, or in
the case of closed loop mechanisms dealing with a much smaller number of algebraic

equations, is a major advantage the of the JR approach.

In this paper an algorithm that efficiently solves for the generalized coordinate
accelerations is presented. We show that taking advantage of the topology of the

mechanical system can improve efficiency. The factorization of the composite inertia



matrix (CIM) is performed using a block Cholesky algorithm and it takes advantage of
the sparsity pattern of CIM. Furthermore, the sparsity pattern is preserved; no fill-in
occurs during factorization. The algorithm is very suitable for parallelization, the
factorization progressing independently along the loops of the mechanical system in a
similar way in which the integration process does. When a coordinate partitioning type
method [12] based on an explicit integration formula is employed in solving the

multibody dynamics problem, significant speed-ups are expected.

The paper is organized as follows. In Section 2 we briefly outline the JR approach to
modelling multibody systems. The notation and relevant results of [11] will be used
throughout this paper. In Section 3 the positive definiteness of CIM for open and closed
loop mechanisms is proved and a simple expression is provided for the quadratic form
expressing the kinetic energy of the system. The proposed technique of factorizing CIM
is presented in Section 4. In Section 5 we show how to take advantage of the parallelism
embedded in the algorithm. Results of some numerical experiments aimed at showing
the capabilities of the new approach are presented in Section 6. We conclude the paper

with some observations and future directions of research.

2 JR Modelling of Multibody Systems
2.1 Basic Concepts

The formalism behind JR modelling of multibody systems is complex. In this section
we present a summary of it, focusing on results needed later on in the paper. The

interested reader is referred to [11] for a detailed description of the formalism.

The main concept in JR modelling of multibody systems is that a body j is viewed as
being located and oriented relative to the inboard body i. Figure 1. shows a pair of
connected bodies with general relative rotational and translational motion. The
inboard body i is located by the position vector r; from the origin of the global xyz
coordinate frame to the origin of the body x'y,'z’ frame. The x'y/'z’' frame is
oriented by an orthogonal transformation matrix A;, which transforms a vector in
the body i reference frame to the global reference frame. A joint reference frame,
X;"'y;"'z;"", is defined and fixed on body ¢ at the joint connection point O;'’, which is
located by the constant vector s;’ from the origin of the x;'y;'z’ frame. A vector d; is
defined from the origin of the joint frame, x;''y;"'z;"’, to the origin O}, of the x;'y,'z’
frame location of the outboard body. Reference frames for each successive body in the

kinematic chain are defined in the same way as those for body .



X

Figure 1 A pair of connected bodies in JR

For each body other than the base body, a body reference frame is defined at the joint
connected to the inboard body in the kinematic chain, and joint reference frames are
defined at joints that are connected to any outboard bodies. Therefore, the
transformation from the inboard body reference frame, X;'y;'z’, to the outboard body
reference frame requires only the constant transformation to the joint reference frame,
X;""yy'" z;'", followed by a joint transformation to the reference frame, x;'y,'z’, of body j.
The reason for defining the body reference frame at the inboard joint is that every body,
except for the base body, has one and only one inboard body in the kinematic chain,
while it may have several outboard bodies. Thus, the origin of the body reference frame

at the inboard joint is unique.

Once the position of body i is defined, the origin of the body j reference frame is
located by the position vector given by

r=r+s +d 1)
where d; = A,C;d;(q;) is a vector from the joint reference frame origin O; on body i
to the body reference frame origin O; on body j, q; is the vector of relative
coordinates for the joint and C; is the constant orthogonal transformation

matrix between the O and O; frames on body i.

The angular velocity of body j can be expressed as



0 = o + o (2)
where o, is the angular velocity of body ¢, o, is the angular velocity of body j, and
o; is the angular velocity of body j relative to body i. The vector o; can be
obtained from the relative coordinate velocity, ¢, by the equation w; = H;(A;, q))q,
where Hj(A;,q)) is a transformation matrix that depends on the orientation of
body i and on the relative coordinates, q;, which are defined for each type of joint.

The velocity of body j can be found by differentiating Equation (1), which yields

: : _ ad; - o
with d; = %(Aicijdij(qj)) = od; + a_q;qj' The tilde (7) over the vector o, signifies the
skew-symmetric operator applied to this vector. After simple manipulations, equations

(3) and (2) can be combined in matrix form as

T 9d; + FH
rj + 1o i+ o 0. i,
[ o ] - [ o; ] + 7% q; )
H
or, in state-vector notation,

N fi + Fimi .
where the velocity state-vector of body i is defined as Y, = [ o, ], and the velocity

ad;

ij
transformation matrix B;between bodiesj and i is defined as B; = aq;

H,

MM,
. Forthe
base body this matrix is the identity matrix of appropriate dimension. Finally, the

acceleration state-vector of the body j is obtained by differentiating Equation (5) with

respect to time, which yields



Once the velocity state-vector Y ; and acceleration state-vector, Y ; are obtained, the

Cartesian velocity and acceleration, Y; and Y ;» for body j can be recovered by using the

relationships Y; = TJ-\A(J- and Yj = TJ-\A(]- — R;, with T; and R; given as follows:

I - A Fo
Ty = [0 | I] Ry = —-TjyY; = [rg)]] (7

In 2.2 we show how the equations of motion for an open loop mechanism are
generated. In 2.3 a brief discussion points out the additional requirements imposed

when one deals with closed loop mechanisms.
2.2  Equations of Motion for a Tree Structured System

The variational Newton-Euler equation of motion for a rigid body can be expressed

in vector-matrix form as
0Z(MY — Q) =0 ®

where the Cartesian acceleration, Y, the Cartesian virtual displacements, 0Z, the

modified mass matrix, M, and the generalized force, Q, are defined as follows:

_ i Sr m — mp F — moop
In (9) p is a vector from the body reference frame location, O’, to the body center of

gravity location. The correspondent state-vector form of (8) is
AT A A A
57 (MY - Q) 0 (10)
and with T and R as defined in (7), for 62, M and (AQ in (10), we have

0Z = T-1oZ M = TT™MT QO =TQ + MR) . (11)

Consider now a multibody system with the tree structure shown in Figure 2. The

variational equation of motion for the n-body system is

iai-{('\hlql - é,) + i 62-{(,\?',9, - él) + i 52-:—('\?"9' — éi

i=1 i=p+1 i=m+1

= EQ(1) + EQ(2) + EQ(3)= 0 . (12)



Figure 2 A Tree Structure

The state variation 62i of body i in chain 2 may is expressed recursively in terms of

inboard joint relative coordinate variations dq, and the state variation 52,) of the

i—-1 .
junction body as 0Z; = 0Z, + z By 0q,, while the acceleration state Y; of body i is

k=p+1

recursively expressed as Y, = \A(p + Z (By d, + D) with B, and D, defined in (5) and

k=p+1

(6).

Concentrating on chain 2, simple manipulations will bring (12) to the following form:

AT A m
EQ(1) + EQ(3) + azp(KMYp + > KBy~ (Lpar — KMDM))

k=p+1

m . m i
+ > oqf| BIKY, + > BKBg -BI[L,—K > D]]=0.
i=p+1 k=p+1 j=p+1

(13)

where the subscript v of Ky is i, if i = k, or k, if i < k. The composite mass and force

matrices K; and L; are recursively obtained as follows:

Ki = K+ M, Li=Lin— KD+ Q (14)

The recursion starts from the last body in the chain, in this case the end body m and

proceeds upwards along the chain toward the base body. For the end body the composite



mass and force matrices K ,,and L, are identical to the state-space reduced mass matrix

M = and force matrix ém respectively.

For chains 3 and 1 one follows the same steps as for chain 2: express the state
variation (ﬁi of body i in terms of inboard joint relative coordinate variations 6q, and the

state variation éﬁp for chain 3 and 621 for chain 1 followed by generating the

A

state-vector accelerations Y, recursively upwards along the chain toward the base

body. Notice that for the junction body p the composite mass and force matrices are

defined as follows

Kp=Mp+ Ky + Kpps
Lp = Qp + (LP+1 - Kp+1Dp+1) + (Lm+1 - Km+1Dm+1) (15)

After simple manipulations one obtains

R n n R n i
azI(Klvl -L,+ ZKkquk) + > oq7| BIK Y. + > BIK B, — BiT(Li - K, >'D,
i=2 j

k=2 k=2
m . P m P
+ > oql|BIKY, + > BIKBd, + > BIKBg, — Bl|L, - Ki(z D, + D,

i=p+1 k=2 k=p+1
L

. P n p
+ > oql[BIKY, + > BIKBG + > BIKB, — BI|L, — K| > D+ D,
i=m+1 k=2 k=m+1 j=2 j=m+1
“

(16)

Thus, starting from (12) and recursively expressing the state-vector virtual
displacements and accelerations, one ends up with the equivalent equation (16).
Equating to zero the expressions multiplying the arbitrary virtual displacements, one
obtains the equations of motion of the open loop mechanism in Figure 2. For any tree
structured mechanism the equations of motion are obtained following the steps outlined

here.
2.3  Equations of Motion for a Closed—Loop System

If the mechanism contains closed loops a number of joints are cut in the process of

obtaining a spanning tree. Constraints should therefore be imposed in order to preserve



the behavior of the mechanism. Consequently, the virtual displacements in (16) are no

longer arbitrary. They are related through the constraint equations which means that
(16) expressed in matrix form as 6qT[Vq - 6] = 0 should hold for all virtual
displacements satisfying ®,0q = 0. Here it is assumed that the collection of all cut
constraint equations for the system are expressed by ®(q) = 0. The entries of matrix

M will be detailed in (18) after introducing a few concepts from graph theory.

Finally, using the Lagrange multiplier theorem[6] and taking into account the
constraint acceleration equations, the equations of motion for closed-loop mechanical

systems are obtained as follows.

-

3 Proving the Positive Definiteness of CIM

Two properties of the composite inertia matrix M; i.e., the special structure (or
sparsity pattern), and the form of the entries are used to prove its positive definiteness.
Both these properties are dictated by the topology of the system as reflected by the

equations of motion.

InJR a graph is associated to each mechanism by considering its bodies and joints as
being the vertices and the connecting edges of the graph respectively. In addition to the
graph concepts introduced in [11], we define a few others needed in the proof of the

result.

Two concepts introduced in Section 2 induce a direction in the spanning tree: the
inboard-outboard relationship between two neighbor bodies, along with the fact that
each body in the spanning tree has one and only one inboard body while having an
arbitrary number of outboard bodies. In what follows we refer to the directed spanning
tree associated with the cut joint mechanism as the spanning tree unless otherwise
stated.

We say that body | is descendent of body i if there is a path in the spanning tree from
body i to body j. Family i, denoted by F(i), is the set of all descendents of body i. If we
add body i to F(i) we denote the new collection of bodies by F[i]. The sequence of bodies
on the unique path starting from body i and ending at body j is called subchain and
denoted by d[i, j]. If body i is left out from this sequence we denote the subchain by d(i, j].
The sub-chains d[i,j) and d(i,j) are defined in similarly. The subchain starting at the
base body and ending at body i is denoted by d[i]. Notice that a subchain inherits the



order from the spanning tree, while a family doesn’t. By concatenating subchain d[i] to
family F(i) one obtains the subtree c(i) which will be ordered from the base body down to
body i. If bis the base body, the subtree c(b) represents the entire spanning tree and for
convenience it will be denoted simply by S. Finally, we say body i is a leaf of the

spanning tree if it has no outboard bodies.

Lemma 1. Let x, be matrix or vector quantity associated with body w, and ysbe a
matrix or vector quantity associated to body ssuch that the multiplication x,y;is well
defined. Then

DD K= DD Xus

SEF(r) weF[s] weEF(r) sed(r,w]

where r is an arbitrary body of the spanning tree.

The proof of this result is based on induction and will be skipped. Based on Lemma

1, by taking r to be a fictitious inboard body of the base body we have the following

Corollary 1. With y," and x, vectors of appropriate dimensions associated with

bodies sand w respectively, the following holds:

PADIRETED IR L

sES weF[s] weSsed[w]

In general the unknowns related to body u occupy position i in the global vector of
unknowns. We define a permutation p which for each body gives its position in the
global vector of unknowns; p(u) = i. If uand v are two bodies of the spanning tree, with

i = p(u) and j = p(v) the block entry (i,j) of CIM is given as

BIK B, if veE d[u]
MI[i,j] = <BIK\B, if v € F(u) (18)
0 if v & c(u)
The matrices B and K are as defined in 2.1 and 2.2 respectively. Notice that rather
than dealing with scalar entries, M is defined in terms of blocks. The number of rows

and columns of block M[i,j] is equal to the dimension of g; and g respectively. In

general, if N is the number of bodies in the system and n; is the dimension of the

N
generalized vector ¢, g; € R", then M € R™", with n = Z n;

i=1

Theorem. The composite inertia matrix M as defined in (18) is positive definite.

10



Proof. Defining v = |v], v}, ..,VHT, we show that %VWV > 0, equality being obtained

only if v = 0. Considering the vector z = Mv and denoting y, = B,v, we have

2(r) = > BIKy.+ > BIKy. (19)

sed[r] SEF(r)

= ZBIZMWyS+ zBIZIOIWyS.

sed[r] WEF[r] SEF(r) weF[s]

Using the result of Lemma 1 and defining u,, = Z ys we further have

sed[w]

2) = > D BMuy.+ > > BMy. (20)

WEF[r] sed[r] weF(r) sed(r,w]

- z BIM . + Z z BIM .y = Z Z BIM.y.

sed[r] WEF(r) sed[w] WEF[r] sed[w]
= z B-rer z ys:B;r Z MUy

weF[r] sed[w] weF[r]

Finally, by using the result of Corollary 1,

%VWV = %Zy:— Z l\/}IWuW = %Z Z er'\AAwa = %Z 2 er|\A/|wa 21

res weF[r] reSweF([r] resSweF[r]
1 Y 1 Y —
= iz Z y-reruw = EZ U\T\IMWUW = EZ ” uw“fhw .
weSred[w] wWES WES
In(21), | - |, defines anorm since M, is positive definite. To see this, notice first that
w

the state-vector reduced matrix M = TTMT = TTH™™ HT, with M and T defined as (9)

and (7) respectively, and M. and H given by

ml 0 I 0
Mc=10 J, , H=1p1]" (22)

J.is the body inertia matrix with respect to a reference frame located at the centroid of
the body and parallel with the body reference frame as defined in Section 2. Therefore,

both J. and M, are positive definite. Since matrices H and T are nonsingular we

conclude that M is positive definite.

11



The last sum in (21) will be equal to zero only when u,, = 0, Yw € S. If thisis true, then
Yw = 0, YW € S, or equivalently B,v,, = 0, Vw € S. Since proper modelling in JR
requires B, to be full column rank we conclude that v, = 0, Vw € S. O

.
Taking v = [v], v}, ..,VI]T = [q;(l)v QZ(Z), ..,q;(n,] , we define the quadratic form %VWV

as representing the kinetic energy of the tree-structured mechanism in the
state-vector space. Notice that u,, defined above represents the state-vector velocity of
body w, i.e., the vector denoted by \A(W in Section 2. Hence (21) says that the kinetic
energy of the system in the state-vector space is equal to the sum of the kinetic energy in

the state-vector space of each body in the system. Based on (11) and the fact that
Y, = TV, follows that

Corollary 2. The kinetic energy of each body in the system is the same as its kinetic
energy in the state-vector space. Therefore the kinetic energy of the tree-structured

mechanism has the same property.

4 Factoring the Augmented Matrix

Since the composite inertia matrix M is positive definite the algorithm of choice for
factoring this matrix is block Cholesky. In the most general case one has to factor the
coefficient matrix of (17). We refer to this matrix as the augmented matrix and we
denote it by A.

In the case of a tree-structured mechanism, the augmented matrix is identical to
the composite inertia matrix. Block Cholesky factorization of the matrix A will result in

a decomposition LL " whose implementation is detailed later on.

Cholesky factorization is not directly applicable when closed loops are present in
the mechanical system. In this instance the augmented matrix is not positive definite
due to the presence of the Jacobian of the constraint equations. The augmented matrix

will be therefore factorized as follows:

M @] L ofll, oO LT T
ASle, o | =T taflo =771 [ O 1
(23)

In (23), L is obtained from the Cholesky factorizationof M = LL T, while T € R"™Mis the

solution of the matrix equation

LT = @] (24)

12



Finally, the matrix T'T is positive definite since the Jacobian of the constraint equations
is assumed to have full row rank. In what follows we concentrate on taking advantage of

the topology of the problem when performing the factorization of the augmented matrix.

4.1  Factoring CIM

An important feature of the JR formulation is that sparsity is not lost, and
furthermore it is structured. Qualitatively, the sparsity is dictated by the topology of
the mechanism, and in the case of closed loop mechanisms also by the cut joints. The
major problem with direct algorithms for sparse systems is that to a certain extent the
sparsity is lost during factorization. The proposed algorithm preserves the sparsity
pattern of CIM; i.e., no fill-in occurs during the Cholesky factorization. For this to

happen, one might have to reorder the unknown accelerations ¢, in the vector of

T T
unknowns ¢ = [ql,q; ..,ql] to obtain ¢, = [q;(l),q;z), ..,q;(n)] = PQ, where P is a

permutation matrix. If, after reordering, body uis assigned position i in {,,, we define
a permutation array b for which b(i) = u. The inverse permutation p(u) = i was

defined in Section 3.

Lemma 2. Let u and v be two bodies in the spanning tree associated with a
mechanical system. No fill-in occurs during the block Cholesky factorization of CIM if
the following holds:

If u € F(v) then p(u) < p(v).

Proof. The symmetry and the block structure of the composite inertia matrix are
used throughout the proof. M is factored using a block-oriented Cholesky factorization
and we show that blockwise, L[k,j] = 0if M[k,j] = 0. For this, notice first that L[1, 1] is
determined from L[1,1]L7[1, 1] = M1, 1] and due to the positive definiteness of M it is

not identically zero. L[k,1] 1is the solution of the matrix equation

L[1, LT[k, 1] = M[k, 1], 1 < k < n, and clearly L[k, 1] = 0 when M[k, 1] = 0.
Suppose that up to column j — 1 the conclusion of Lemma 2 holds. The positive
definiteness of M implies that L[j,j] obtained from L[j,j]LT[j,j] = M[j,j]

j—1
- z L[j,i]LT[j,i], is not identically zero. For k > j, L[k, ] is the solution of the matrix

i=1

-1
equation L[j,jJL'[kj] = M[kj] = > L[j,i]JLTk.i].

13



Let M[k,j] = 0 and suppose there is an i, i < j < k, such that L[j,i]JL"[k,i] = O.
Then M[i,j] # Oand M[i,k] # 0. Let bodies u, v, w be such that p(u) = i, p(v) = j and
p(w) = k. Because of the way in which precedence was defined in the vector of

unknowns, thisimplies that v € d[u] and w € d[u]. But then, since | < k, we also have
w € d[v] and therefore M[k,j] = 0. This is a contradiction and thus, no such i exists.
Then L[j,j]L"[k,j] = O and therefore L[k,j] = 0.0

The reordering induced by the permutation array r is not unique. We do not provide
an algorithm for computing the permutation array r but developing one is

straightforward. Notice that a transformation of the form M ., = PMPT is to be applied
to the original CIM too. Since the reordering holds for the whole simulation, an initial
renumbering of the mechanism joints would take care of this aspect. In this case no

permutations are needed to ensure no fill-in factorization of the CIM.
4.2 The Closed-Loop Case

In the case of a closed-loop mechanical system, a set of M joints connecting bodies in
the system are cut to obtain a spanning tree of the mechanism. A set of constraint

equations @V, ®@, .. &™) are imposed to account for the cut joints. In Section 2.3 the

collection of constraint equations was denoted by ®T = [<I>(1)T<I)(2)T... Q(M)T} = 0 with

M
®ER", m= z m, ®© € RM. With a columnwise partition of T in (23), one has to

i=1
solvefor TV € R™™Min LT® = <I>g)T for 1 < j < M. With the precedence in the vector of
unknowns induced by Lemma 2, the following result singles out the zeros of the matrix

T in (24):

Lemma 3. Let constraint j account for the cut joint between bodies k and | and let

i = p(u), with u ¢ d[k]ud[l]. Then T9[i] = 0.

Proof. Let i be the smallest integer which satisfies the hypothesis of the lemma and

yet violates the conclusion.

i—-1
Row i of LTO =@  reads > L[i,VJTO[V] + L[i,i]TV[i] = ®?.  Since
v=1

u & dkjud[l], we have @83 = 0 and therefore i cannot be 1. Suppose there exists v,

1 < v < i,suchthat L[i,v]T?[v] = 0. With the precedence induced by Lemma 2, and w
defined by v = b(w), we have that w € F(u) and therefore u € d[w]. Finally, since

14



TO[v] # 0 and v < i we have w € d[kK]Ud[l]. But then u & d[k]ud[l], which is a

contradiction.m
4.3  Algorithm

Based on the decomposition (23) we show in the algorithm below the steps for
solving the augmented system (17). The ordering of the elements of the unknown vector

as induced by Lemma 2 is assumed:

Algorithm for computing the accelerations and the Lagrange Multipliers in JR

formulation:
Step 0 Sety, =0, y, € R".
Step 1 Factor M = LL .
Step 2 Solve Lz, = Q*, z, € R"
IF (closed-loop) then:
Step 3.1 Solve LT = ®;, T € R™™;
Step 3.2 Set z, =T"z, — 7;
Step 3.3 Compute T'T;
Step 3.4 Solve T™TA = z,, A € R™;
Step 3.5 Set y, = TA;
endIF
Step 4 Solve L' = z, — VY, .
Remarks.

1. During Step 1 one factors the CIM using block Cholesky with no fill-in.
Therefore the sparsity pattern for L is known beforehand.
2. Solving for z,requires only to forward substitution. Without taking sparsity

into account in Step 2, row i of Lz, = Q” reads

i—-1
z L[i,v]z,[v] + L[i,i]z[i] = QA[i]. A reduced number of operations results if

v=1

in the light of Lemma 2 one equivalently expresses row i as

Z L[i,b(kK)]z.[b(K)] + L[i,i]z[i] = Q*[i] when solving for z,[i]. The same

KEF( (i)

remark holds when backward substitution retrieves the accelerations ¢

during Step 4.

15



3. Using the result of Lemma 3, one can further take advantage of the problem
structure when computing the matrix T during Step 3.1. Basically, as with
remark 1, some entries of this matrix are known beforehand to be zero and
need not be computed. Sparsity can be further exploited when performing
any matrix-matrix, or matrix-vector multiplications involving T in Step 3.

4. From Lemma 3, the coefficient matrix in T'TA = z,, is dense. The m x m
coefficient matrix is positive definite (see Section 4) and it is factored using
Cholesky decomposition.

In general, it is not possible to give an operation count for this algorithm. The
number of operations will depend on the topology of the particular mechanical system
one deals with. We expect our algorithm to require fewer operations than gaussian
elimination to solve (17). In 6 we present a comparison in terms of number of operations

and CPU time for several alternatives when dealing with a vehicle model.

5 Taking Advantage of Parallelism

Throughout this Section we assume that the precedence in the vector of unknowns
isasin Lemma 2. Before stating the main result of this Section, we define two sets. Let j
be an integer such that 1 < j < N, where N is the dimension of the CIM. Define

D(j) ={i|ll=<i<j and b(i) € F(b())}

UG) ={ilj=i=N and b(i) € d[b()]}

Lemma 4. During the Cholesky factorization of the CIM, forany j, 1 = j < N, and
k € U(j), L[k j] can be computed provided for each i € D(j), L[l,i] is available for
I € u().

Proof. Let v be the body in the system for which p(v) = j. We first show that the

conclusion holds if j corresponds to a leaf v. Then we will show that it holds for any j.

One step of the Cholesky factorization algorithm can be carried out in the following
sequence: solve first for L[j,j] in (25), and then for L[k,j], ] < k < N in (26). In what

follows we concentrate on computing the summation in the RHS of (25) and (26).
j-1
L{,JIL L1 = MG, ] - ZL[j,i]LT[j,i] (25)
i=1

L[, JIL Tk 1 = MIk,j] - ZL[j,i]LT[k,i] (26)

16



Let jin p(v) = jbesuchthat vis aleaf. Then D(j) = {0}. For 1 < i < jlet ubesuch
that p(u) = i. One has then that u & F(v) because otherwise D(j) = {(}. Likewise
u & d[v] since p(u) < p(v), and this would violate the precedence induced by Lemma 2.
Therefore u & c[v] and with the definition of M[j,i] as given in (18) along with the
result of Lemma 2 one is left with L[j,j] being the solution of L[j,jIL[j,j] = MI[j,j].
Furthermore, since LJ[j,i] =0 for 1<i<j, L[kj] is the solution of
L[j,jILk,j]1 = M[k,j]l, j < k < N. Thus for the case of j corresponding to a leaf of the
tree one can compute L[k, j] for k € U(j).

During the last step of this prooflet j be such that D(j) = {(},i.e. vin p(v) = jisnot
aleaf of the tree. We assume that for each i € D(j), L[l,i] are available for | € U(i). We
show that L[k, ] can be computed for k & U(j).

With i being the index in the RHS summation in (25), let u be such that p(u) = i.
There are two alternatives: u € F(v) or u € F(v). In the first case u & d[v] because
otherwise the precedence induced by Lemma 2 is violated. Then u & c[v] and again
with the definition of M[j,i] as given in (18) along with the result of Lemma 2 one has
that L[j,i] = 0. On the other hand if u € F(v) then j € U(i) and therefore L[j,i] is
known. Consequently, one can evaluate the summation in the RHS of (25) and obtain
the value L[j,j].

Finally, to compute L[k,]j] for k € U(j) one needs to evaluate the summation in the
RHS of (26). It was shown above that L[j,i] is either identically zero (and in this case
L[k, i] needs not be evaluated) or known (when j € U(i)). In this latter situation one
needs the value of L[k,i]. If j € U(i), since k € U(j) we have that k € U(i) as well, and

consequently L[k, i]is known and the summation can be evaluated.o

When the Cholesky factorization progresses in the sequence described by (25) and
(26) the process moves columnwise. Each column is filled starting from the diagonal
element and proceeding down to the last row of the matrix. Lemma 4 states that based
on a certain amount of information, some of the entries of column j, namely L[k, j] with
k € U(j) can be computed. It is easy to show that all the other entries are identically
zero. For when k & U(j) and j < k = N, an argument following the proof above based
on (18) and Lemma 2 shows that L[k,j] = 0.

The results in this section give a practical way in which CIM can be factorized:
column j can be computed once the columns i = p(u) corresponding to all u € F(v) have

been computed. In other words, the factorization progresses independently upwards

17



from the tree-end bodies towards the root of the tree. We conclude these remarks in the

following corollary based on the result of Lemma 4.

Corollary 3. Let u and v be two bodies in the spanning tree associated with a
mechanical system and u & F(v) and v & F(u). Then the columns k = p(w)for w € F(u)
and | = p(t) for t € F(v) of the matrix L in the Cholesky factorization of CIM can be

computed in parallel.

Note that there is another stage in the algorithm presented in Section 4 that can be
easily parallelized; any forward or backward substitution involving the matrix L can be

parallelized. The result is similar to the one in Lemma 4 and will be skipped here.

6 Numerical Experiments

In this section four different methods for solving the augmented system will be
compared. The comparison is made in terms of CPU time, and for gaussian elimination

and the proposed algorithm in terms of number of operations as well.

The first method analyzed is based on gaussian elimination and it is denoted by
Gauss. The method Symmetric is based on a PAPT = LDL " decomposition of the
symmetric augmented matrix A, where Dis a diagonal matrix with blocks of dimension
1 X 1or 2 X 2. The method Harwell solves the augmented system by using linear
algebra subroutines from the Harwell library. The last method is the one described in

Section 4 of this paper.

The numerical experiments were performed on the 14-body model of the Army’s
High Mobility Multipurpose Wheeled Vehicle HMMWYV) [8]. Figure 3 shows the graph
associated with the mechanical system. R stands for revolute joint, T for translational

joint, S for spherical joint, and D for distance constraint.

Body:
1 Chassis 2 Right front upper control arm
3 Right front wheel spindle 4 Left front upper control arm
5 Left front wheel spindle 6 Right rear upper control arm
7 Right rear wheel spindle 8 Left rear upper control arm
9 Left rear wheel spindle 10 Rack
11 Right front lower control arm 12 Left front lower control arm
13 Right rear lower control arm 14 Left rear lower control arm

18



For this problem the coefficient matrix in (17) has dimension 43. 16 constraints
account for the cut joints; the vector of generalized coordinates has dimension 27. The

vehicle model has 11 degrees of freedom.

Figure 3 Topological Graph for HMMWYV 14—-Body Model

The constraints marked with an arrow were cut to obtain in Figure 4 (a), the

spanning tree associated with the mechanism.

In [8], the strategy for solving the system (17) is based on gaussian elimination.
Table 1 shows the number of operations for the gaussian elimination. Fact stands for
factorization, F'S for forward substitution, BS for back substitution. The number of
additions A, multiplications M, divisions D and square roots SQ was counted at each

stage of Gauss.

Gauss Fact FS BS Total
A 25585 903 903 27391
M 25585 903 903 27391
D 903 0 43 946
SQ 0 0 0 0

Table 1 Operation count for gaussian elimination

19




Wl &

0
TR
(») (D O G

(a) Initial Numbering (b) Renumbering used by the algorithm
Figure 4 Spanning Tree for HMMWYV 14-Body Model

Table 2 provides the operation counts for algorithm Alg—S. This implementation of
the proposed algorithm uses topology information to take advantage of sparsity. In
order to preserve the sparsity pattern of CIM, the joints of the system were renumbered

as in Figure 4 (b).

Alg-S 1 2 3.1 3.2 3.3 3.4 3.5 4 Total
A 975 165 708 172 834 680 145 192 3871
M 975 165 804 172 1135 680 162 165 4258
D 165 27 174 0 0 120 0 27 513
SQ 27 0 0 0 0 16 0 0 43

Table 2 Operation count for Alg—-S

The number of additions, multiplications and divisions for Alg-S is clearly smaller
than for Gauss. As implemented for this test problem, it required the calculation of 43
square roots when performing the two Cholesky factorizations, while Gauss required
none. Square root calculations can be eliminated using an LDL T approach; this

alternatives remains to be investigated.

One advantage of Alg-S over the gaussian elimination family of solvers is that no
pivoting is involved. Gaussian elimination needs pivoting in order to ensure numerical
stability. Alg-S gets around this by employing Cholesky factorizations twice, which is

known to be numerically stable [3]. A disadvantage of the new algorithm is the data

20



accessing pattern and number of vector touches (sparsity-related overhead). While for
gaussian elimination the fashion in which data is manipulated is intuitive, it is not
straightforward for the proposed algorithm. It is difficult to asses to what extent this
will affect the overall performance. It depends on the particular mechanical system
being modeled, and the way the algorithm is coded. An ideal implementation of Alg-S
would be a no-loop, hardcoded, problem dependent version, generated during the
preprocessing stage of the simulation. This would require a program that based on

topology information codes the algorithm of Section 4.3 for each mechanical system.

We made an attempt to evaluate the sparsity-related overhead for this test
problem. For this, the same steps of the algorithm were to be followed but all the
sparsity-related book-keeping present in  Alg-S was eliminated by using
dense-matrix operations. BLAS 2 and 3 operations along with dense Cholesky
factorization are at the core of Alg-D/ense/. One does not need to renumber the joints of
the mechanical system nor keep track of the topology information. The operation

counts for this implementation of the algorithm is provided in Table 3.

Alg—-D 1 2 3.1 3.2 3.3 3.4 3.5 4 Total
A 3276 351 5616 432 3536 | 2280 405 378 | 15914
M 3276 351 5616 432 3672 | 2280 432 351 | 16410
D 351 27 432 0 0 152 0 27 989
SQ 27 0 0 0 0 16 0 0 43

Table 3 Operation counts for Alg—D

Table 4 list the CPU times in microseconds for the methods discussed above. The
times correspond to one solving of the augmented system (17). For comparison reasons
we also include in this table the timing results obtained when using the Harwell solver

and the algorithm Symmetric.

Gauss Symmetric Harwell Alg-S Alg—-D
2336 2022 3532 1201 1179

Table 4 CPU times for different methods

It turns out that Alg-D performs better than all the others. The dimension of the

test problem is too small for any benefit to show up as a result of taking into account the

21



topology information in Alg-S. The sparsity-related overhead for this test problem
hurts the overall efficiency of the algorithm. We emphasize that the numerical

implementation behind Alg-S could be further improved.

In Alg-S and Alg-D the positive definite systems were solved using the driver
dposv. In Gauss, Symmetric and Harwell the routines used were dgesv, dsysv, and
the triple ma28ad/ma28bd/ma28cd respectively. With the exception of the triple
ma28.. taken from an older HARWELL public domain library, the other routines were
available in LAPACKI[7]. The newer and faster routine ma47 designed in
HARWELLJ5] to solve large sparse symmetric systems was unavailable to the authors

at the time of this study. It certainly arises as a possible alternative for larger problems.

For the sake of completeness, Table 5 presents a detailed profile of the algorithms
Alg-S and Alg-D, listing CPU times in microseconds for each step of the

implementations.

1 2 3.1 3.2 3.3 3.4 3.5 4 Total
Alg-S| 300 59 246 50 276 159 57 54 1201
Alg-D| 289 31 347 27 276 147 31 31 1179

Table 5

The results above show that for this case, the advantage of using sparsity fades
when dealing with forward/backward eliminations with a sparse coefficient matrix. It
is only when sparsity information is used for the coefficient and right-hand matrices in
step 3.1 (computing the T matrix) that Alg-S gains an edge over Alg-D. As mentioned
before this suggests that Alg-S can be further improved. Swapping between the two
algorithms is not likely to result in any benefit because of the different storage

techniques.

7 Conclusions

Current vehicle models contain generalized coordinates numbering in the tens or at
most hundreds. For this dimension range we developed an algorithm for solving the
system of linear equations providing for the Lagrange multipliers and the set of
accelerations. The algorithm was implemented in two versions: Alg-D, the dense
matrix implementation, and Alg-S the sparse version. The first one turned out to be
slightly more efficient for a 14-body model of the Army’s High Mobility Multipurpose
Wheeled Vehicle HMMWYV).

22



For this test problem the two methods performed better than the gaussian
elimination in a ratio of approx. 1:2. Gaussian elimination is the method currently
implemented in NADSdyna [8].

For larger models it is expected that the sparsity will become an important factor.
An improved version of Alg-S, or the new routine ma47 from Harwell used in Alg-D is
expected to increase the speed-up. Taking into account the data in Table 1 and Table 2,
we expect the 1:2 ratio above could be further improved if a no-loop, hardcoded version
of Alg-S that takes full advantage of sparsity is implemented. This would be done by a

preprocessing tool that based on topology information codes the proposed algorithm.

Finally, the parallelism inherent in the joint formulation might be an additional
speed-up factor for large problems. Additional numerical experiments with larger
models should be conducted to asses the dimension range in which the parallelism
results in better efficiency.

Acknowledgment
The authors would like to thank Jim Cramer for diligently reading the manuscript of

this paper and for the comments he made.

References

[1] Brenan, K.E., Campbell S.L., and Petzold L.R., 1989, Numerical Solution of

Initial-Value Problems in Differential-Algebraic Equations, Elsevier

2] Eich, E., Fuhrer, C., Leimkuhler, B., and Reich, S., 1990, “Stabilization and
Projection Methods for Multibody Dynamics,” Research Report A281, Helsinki
University of Technology, Institute of Mathematics, Otakaari 1, SF-02150
Espoo, Finland

[3] Golub, G.H. and Van Loan, C. F., 1989, Matrix Computation, John Hopkins

University Press, Baltimore

[4] Hairer, E., Wanner, G., 1996, Solving Ordinary Differential Equations II:
Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin

[5] Harwell Subroutine Library - Specifications, 1995, AEA Technology, Harwell
Laboratory, Oxfordshire, England

23



[6]

[7]

(8]

[9]

[10]

[11]

[12]

Haug, E.J., 1989, Computer-Aided Kinematics and Dynamics of Mechanical
Systems, Volume I: Basic Methods, Allyn and Bacon, Needham, Massachusets

LAPACK Users’ Guide, 1992, STAM, Philadelphia

NADS Vehicle Dynamics Software, Vol.2, Release 4, August 1995, CCAD, The

University of Iowa, Iowa City, Iowa

Serban, R., Negrut, D., Potra, F. A., and Haug, E.J., 1997, ”A Topology Based
Approach for Exploiting Sparsity in Multibody Dynamics in Cartesian
Formulation”, to appear in Mech. of Struc. and Mach., Vol. 25, No. 3

Potra, F. A., 1993, "Numerical Methods for Differential-Algebraic Equation
with Application to Real-Time Simulation of Mechanical Systems”, Zeitschrift
fur Angewandte Mathematik und Mechanik (ZAMM), 74, 3 (1994), pp.
177-187

Tsai, F. F., 1983, ”Automated Methods for High Speed Simulation of
Multibody Dynamic System”, Ph.D. Thesis, The University of Iowa

Wehage, R.A. and Haug E.J., 1982, “Generalized Coordinate Partitioning for
Dimension Reduction in Analysis of Constrained Dynamic Systems,” ASME J.
of Mechanical Design, Vol. 104, No. 1, pp 247

24



