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List of symbols

q vector of generalized coordinates
Φ array of position kinematic constraints
M system mass matrix
λ vector of Lagrange multipliers
QA generalized external forces
τ kinematic acceleration equation right hand side
ndof number of degrees of freedom in the mechanical system
y generic variable used in the definition of the Initial Value Problem
yn solution of Rosenbrock method at tn

ŷn numerical solution of the embedded method at tn

γ diagonal element of the Rosenbrock formula
(α)ij , (γ)ij , (δ)ij , (θ)ij Rosenbrock-Nystrom method coefficients
(a)ij , (c)ij , (b)i, (b̂)i, (m)i, (m̂)i Rosenbrock-Nystrom method coefficients
(a)i, (γ)i, (β)ij , (β′)i, (µ)i, (µ̂)i coefficients used in the derivation of the Rosenbrock-Nystrom formula
h integration step-size
ki stage vector of Rosenbrock method
`i stage vector of Rosenbrock-Nystrom method
J Rosenbrock Jacobian w.r.t. y

J1 Rosenbrock-Nystrom Jacobian w.r.t. y

J2 Rosenbrock-Nystrom Jacobian w.r.t. y′

sci integration composite tolerance for variable i

Atoli user prescribed absolute tolerance for variable i

Rtoli user prescribed relative tolerance for variable i

err integration local error
p integration order for the Rosenbrock-Nystrom method
p̂ integration order for the embedded method
fac, facmin, facmax step-size selection safety factors
m1, m2 mass of pendulums
L1, L2 length of pendulums
k1, k2 spring stiffnesses
c1, c2 damping coefficients
x1, y1, θ1, ẋ1, ẏ1, θ̇1 initial conditions for first pendulum
x2, y2, θ2, ẋ2, ẏ2, θ̇2 initial conditions for second pendulum
α0

1, α
0
2 zero tension angles for the rotational springs

n number of integration steps
N number of integration steps taken during reference simulation
e generic variable considered for error analysis
E values obtained for the generic variable during the reference simulation
r(i) integration grid points
∆i error at time step i

∆(k), ∆
(k)

maximum and average trajectory errors
E∗ value of E at the time step where the integration error is maximum
RelErr integration relative error
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Abstract

When performing dynamic analysis of a constrained mechanical system, a set of index 3 Differential-Algebraic

Equations (DAE) describes the time evolution of the system [3, 2]. In the companion paper [4] a state-space

based method for the numerical solution of the resulting DAE is developed. The numerical method uses a

linearly-implicit time stepping formula of Rosenbrock type, which is suitable for medium accuracy integration

of stiff systems. This paper discusses choices of method coefficients and presents numerical results. For stiff

mechanical systems, the proposed algorithm is shown to significantly reduce simulation times when compared

to state of the art existent algorithms. The better efficiency is due to the use of an L-stable integrator [2],

and a rigorous and general approach to providing analytical derivatives required by it.

Keywords: Multibody dynamics, differential-algebraic equations, state space form, Rosenbrock methods.

1 Introduction

For the dynamic analysis of a mechanical system, this paper presents a method that uses a state-space

implicit Rosenbrock-type integrator. The generalized coordinates q considered are Cartesian coordinates for

position, and Euler parameters for orientation of body centroidal reference frames. Without loss of generality

and in order to simplify the presentation, an assumption is made that the constraints are holonomic and

scleronomic. The kinematic constraints are then formulated as algebraic expressions involving generalized

coordinates,

Φ(q) =
[

Φ1(q) . . . Φm(q)

]T

= 0 (1a)

where m is the total number of independent constraint equations that must be satisfied by the generalized

coordinates throughout the simulation. Differentiating Eq.(1a) with respect to time leads to the velocity

kinematic constraint equation

Φq(q) q̇ = 0 , (1b)

where the over dot denotes differentiation with respect to time and the subscript denotes partial differentia-

tion. The kinematic acceleration equation is obtained by taking the time derivative of the velocity constraint

equations to obtain
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Φq(q) q̈ = τ(q, q̇) , (1c)

The time evolution of the system is governed by the Lagrange multiplier form of the constrained equations

of motion [3],

M(q)q̈ + Φq(q)Tλ = QA(q, q̇, t) (1d)

Equations (1a)–(1d) comprise a system of differential-algebraic equations (DAE). The companion paper

[4] introduced a method based on the partitioning of the coordinates in dependent and independent; the

integration of the resulting state-space ordinary differential equation was done using a Rosenbrock-Nystrom

linearly implicit method. Rosenbrock methods are generally efficient for medium accuracy simulations. They

do not require an iteration procedure and have optimal linear stability properties for stiff systems.

This paper introduces an actual Rosenbrock-Nystrom algorithm based on a fourth order L-stable Rosen-

brock method, and discusses a second order method that can accommodate inexact Jacobians. Numerical

experiments for two problems indicate that the Rosenbrock-Nystrom algorithm is reliable and efficient for

medium accuracy integration of mechanical systems that lead to stiff state-space ODE (SSODE).

2 The Proposed Algorithm

For the Initial Value Problem y′ = f(t, y), an s-stage Rosenbrock method is defined as [2]

yn+1 = yn +
∑s

i=1 biki , (2a)

ki = hf
(
tn + αih, yn +

∑i−1
j=1 αijkj

)
+ γih

2 ∂f
∂t (tn, yn) + hJ

∑i
j=1 γijkj , (2b)

where the coefficients α, γ and b are chosen to obtain the desired accuracy and stability properties.

For the purpose of error control in the generic Rosenbrock method a second approximation of the solution

at the current time step is used to produce an estimate of the local error. This second approximation ŷn+1

is usually of lower order and it uses the same stage values ki with a different set of coefficients b̂i,

ŷn+1 = yn +
s∑

i=1

b̂iki (3)
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The approximation |yn+1 − ŷn+1| of the local error depends on the size of the integration step-size, and

the latter is increased or decreased to keep the local error below a user prescribed absolute and/or relative

tolerance. In the multidimensional case as for the solution of the SSODE, y ∈ Rndof , and at time step n+1

the goal is to keep the error in component i smaller than a composite error tolerance sci

|yi
n+1 − ŷi

n+1| < sci, sci = Atoli + max(|yi
n|, |yi

n+1|) ·Rtoli (4)

where Atoli and Rtoli are the user prescribed absolute and relative integration tolerances for component i,

1 ≤ i ≤ ndof . The value

err =

(
1

ndof

ndof∑

i=1

(yi
n+1 − ŷi

n+1)
2

sc2
i

)1/2

(5)

is considered as a measure of local error. If the order of the proper and embedded formulas used is p and

p̂ respectively, asymptotically err ≈ Chq+1, where C is a constant depending on the choice of formulas and

q = min(p, p̂). Optimally, err = 1 and therefore 1 ≈ Chq+1
opt . The optimal step-size is computed then as

hopt = h

(
1

err

) 1
q+1

(6)

A safety factor fac multiplies hopt to decrease the chance of a costly rejected step-size, which happens

whenever err > 1. Further, the step-size is not allowed to increase or decrease too fast. This is achieved by

two control parameters facmin and facmax,

hnew = h ·min
(
facmax, max

(
facmin, fac · (1/err)1/(q+1)

))
(7)

For most engineering applications, efficient simulation requires expeditious low to medium accuracy

methods with very good stability properties. Integration formulas with few function and Jacobian evaluations

are favored, since these operations for mechanical system simulation are typically costly. Based on these

considerations, the integrator of choice is a 4 stages L-stable order 4 Rosenbrock-Nystrom method, provided

with order 3 embedded formula for step-size control. The L-stability is a desirable attribute that allows for

the integration of very stiff problems, which translates in efficient simulation of models with bushing elements

and flexible components. Following an idea in [2], the number of function evaluations for the 4 stage method

is kept to 3; i.e., one function evaluation is saved. This makes the proposed Rosenbrock-Nystrom method

competitive with the trapezoidal method, whenever the latter requires 3 or more iterations for convergence.

However, the trapezoidal method is of order 2 and only weakly A-stable.

5



The notation introduced in [4] is going to be used in the derivation of the method coefficients. Thus,

βij = αij + γij , β′i =
∑i−1

j=1 βij , αi =
∑i−1

j=1 αij , and γi =
∑i

j=1 γij . For reasons of computational efficiency

the coefficients γii are identical for all stages; i.e., γii = γ for all i = 1, . . . , s. Note that formally αii = 0, 1 ≤

i ≤ s.

With this, the defining coefficients αij , γij , and bi of an order 4 Rosenbrock method of Eqs.(2a– 2b) are

subject to the following order conditions [2]:

b1 + b2 + b3 + b4 = 1 (8a)

b2β
′
2 + b3β

′
3 + b4β

′
4 = 1/2− γ (8b)

b2α
2
2 + b3α

2
3 + b4α

2
4 = 1/3 (8c)

b3β32β
′
2 + b4 (β42β

′
2 + β43β

′
3) = 1/6− γ + γ2 (8d)

b2α
3
2 + b3α

3
3 + b4α

3
4 = 1/4 (8e)

b3α3α32β
′
2 + b4α4 (α42β

′
2 + α43β

′
3) = 1/8− γ/3 (8f)

b3β32α
2
2 + b4

(
β42α

2
2 + β43α

2
3

)
= 1/12− γ/3 (8g)

b4β43β32β
′
2 = 1/24− γ/2 + 1.5γ2 − γ3 (8h)

For the purpose of automatic step-size control, the stage values ki are reused to provide an embedded

formula of order 3 of the form ŷ1 = y0 +
∑s

i=1 b̂iki. The order conditions for the order 3 algorithm are as

indicated as Eqs.(8a– 8d), and they lead to the system




1 1 1 1

0 β′2 β′3 β′4

0 α2
2 α2

3 α2
4

0 0 β32β
′
2 β42β

′
2 + β43β

′
3







b̂1

b̂2

b̂3

b̂4




=




1

1/2− γ

1/3

1/6− γ + γ2




(9)

If the coefficient matrix in Eq.(9) is non-singular, uniqueness of the solution of this linear system implies

b1 = b̂i. To prevent this, one additional condition is considered to obtain a distinct order 3 embedded

formula. It requires the coefficient matrix in Eq.(9) to be singular, which results in

β32β
′
2(β

′
2α

2
4 − β′4α

2
2) = (β′2α

2
3 − β′3α

2
2)(β42β

′
2 + β43β

′
3) (10)
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The number of coefficients that must be determined is 17; the diagonal coefficient γ, six coefficients γij , six

coefficients αij , and four weights bi. The number of conditions that these coefficients have to satisfy is nine.

There are eight degrees of freedom in the choice of coefficients and some of these are used to construct a

method with one less function evaluation. Thus, if

α41 = α31 , α42 = α32 , α43 = 0 , (11)

stage 4 of the algorithm saves one function evaluation. Finally, the free parameters can be determined such

that several order 5 conditions of the otherwise order 4 formula are satisfied. When the conditions of Eq.(11)

hold, one of the nine order 5 conditions associated with a Rosenbrock type formula leads to

α3 =
1/5− α2/4
1/4− α2/3

(12)

A second order 5 condition is satisfied by imposing the condition

b4β43α
2
3(α3 − α2) = 1/20− γ/4− α2 (1/12− γ/3) (13)

Next, two conditions are chosen as

b3 = 0 , α2 = 2γ , (14)

to make the task of finding the defining coefficients αij , γij , and bi more tractable. Finally, the last condition

regards the choice of the diagonal element γ. The value of this parameter determines the stability properties

of the Rosenbrock method. In this context, the diagonal entry of the Rosenbrock formula is suggested in [2]

as γ = 0.57281606, which is adopted for the proposed algorithm. With this, there is a set of 17 equations,

some of them non-linear, in 17 unknowns. The solution of this system is provided in Table 1, along with the

coefficients b̂i of the order 3 embedded formula.

Once the coefficients of the underlying Rosenbrock formula are available, the coefficients of the Rosenbrock-

Nystrom formula defined in the companion paper [4] are easily computed. The full set of coefficients for the

order 4, L-stable formula is provided in Table 2.

It should be recalled that any Rosenbrock type formula requires an exact Jacobian for the numerical

solution to maintain its stability and accuracy properties. Sometimes this might be a very challenging

requirement. Consider for example the situation when complex tire models are present in a model, or for
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γ = 0.57281606

α21 = 1.14563212 γ21 = 2.341993127112013949170520

α31 = 0.520920789130629029328516 γ31 = -0.027333746543489836196505

α32 = 0.134294186842504800149232 γ32 = 0.213811650836699689867472

α41 = 0.520920789130629029328516 γ41 = -0.259083837785510222112641

α42 = 0.134294186842504800149232 γ42 = -0.190595807732311751616358

α43 = 0.0 γ43 = -0.228031035973133829477744

b1 = 0.324534707891734513474196 b̂1 = 0.520920789130629029328516

b2 = 0.049086544787523308684633 b̂2 = 0.144549714665364599584681

b3 = 0.0 b̂3 = 0.124559686414702049774897

b4 = 0.626378747320742177841171 b̂4 = 0.209969809789304321311906

Table 1: Coefficients for the Rosenbrock method.

a general purpose solver the case when user defined external routines are employed for the computation of

active forces such as aerodynamic forces. Verwer et al. 1997, proposed a second order W-method [1], which

is a Rosenbrock type method in the sense that it does not necessitate the solution of a non-linear system, but

which does not require an exact Jacobian. The defining coefficients for this method are provided in Table 3,

and within the proposed implicit SSODE integration framework they can be used for the numerical solution

of the index 3 DAE of multibody dynamics.

3 Numerical Experiments

This paper discusses the implementation of a Rosenbrock-Nystrom method based on Algorithm 1 of [4] and

the 4 stage, order 4 L-stable Rosenbrock formula introduced in the previous Section. Note that a W-method

can be similarly implemented by replacing the corresponding coefficients of the Rosenbrock-Nystrom formula

with the appropriate W-coefficients of Table 3. A set of numerical experiments is first carried out to validate

the proposed Rosenbrock-Nystrom method. Then a comparison with an explicit integrator is performed

to assess the efficiency of the proposed algorithm for numerical integration of a more complex mechanical
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θ21 = 1.14563212 a21 = 0.20000000000000000000000

θ31 = 0.789509162815638629626980 a31 = 1.86794814949823713234476

θ32 = 0.134294186842504800149232 a32 = 0.23444556851723885002322

θ41 = 0.789509162815638629626980 a41 = 1.86794814949823713234476

θ42 = 0.134294186842504800149232 a42 = 0.23444556851723885002322

θ43 = 0.0 a43 = 0.0

c21 = -7.137649943349979830369260 δ21 = -1.196361007112013949170520

c31 = 2.580923666509657714488050 δ31 = 1.470280254409780714633870

c32 = 0.651629887302032023387417 δ32 = 0.348105837679204490016704

c41 = -2.137115266506619116806370 δ41 = 0.003765094355556165798974

c42 = -0.321469531339951070769241 δ42 = -0.109762486758103255675398

c43 = -0.694966049282445225157329 δ43 = -0.228031035973133829477744

m1 = 2.255566228604565243728840 m̂1 = 2.068399160527583734258670

m2 = 0.287055063194157607662630 m̂2 = 0.238681352067532797956493

m3 = 0.435311963379983213402707 m̂3 = 0.363373345435391708261747

m4 = 1.093507656403247803214820 m̂4 = 0.366557127936155144309163

µ1 = 1.592750819409585342074900 µ̂1 = 1.434903971848209472627100

µ2 = 0.195938266310250609693329 µ̂2 = 0.222978672588698369045153

µ3 = 0.0 µ̂3 = 0.124559686414702049774897

µ4 = 0.626378747320742177841171 µ̂4 = 0.209969809789304321311906

γ2 = -1.769177067112013949170520 a2 = 1.145632120

γ3 = 0.759293964293209853670967 a3 = 0.655214975973133829477748

γ4 = -0.104894621490955803206743 a4 = 0.655214975973133829477748

Table 2: Coefficients for the Rosenbrock-Nystrom method.
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γ = 1.70710678118650

α1 = 0.00000000000000 γ1 = 1.70710678118650

α2 = 1.00000000000000 γ2 = -1.70710678118650

a21 = 0.58578643762690 c21 = -1.17157287525380

δ11 = 1.70710678118650 δ22 = 1.70710678118650

δ21 = -2.41421356237310

θ21 = 1.00000000000000

m1 = 0.87867965644040 m̂1 = 1.17157287525380

m2 = 0.29289321881340 m̂2 = 0.58578643762690

µ1 = 0.79289321881340 µ̂1 = 0.58578643762690

µ2 = 0.50000000000000 µ̂2 = 1.00000000000000

Table 3: Coefficients for the W-method.

system.

3.1 Validation of Proposed Algorithm

Validation is carried out using the double pendulum mechanism shown in Fig.1. Stiffness is induced by

means of two rotational spring-damper-actuators (RSDA). The masses of the two pendulums are m1 = 3 and

m2 = 0.3, the dimension of the pendulums are L1 = 1 and L2 = 1.5, the stiffness coefficients are k1 = 400

and k2 = 3.E5, and the damping coefficients are c1 = 15 and c2 = 5.E4. The zero-tension angles for the

two RSDA elements are α0
1 = 3π/2 and α0

2 = 0. All units are SI.

In its initial configuration, the two degree of freedom dynamic system has a dominant eigenvalue with a

small imaginary part and a real part of the order -10E5. Since the two pendulums are connected through

two parallel revolute joints the problem is planar. In terms of initial conditions, the centers of mass (CM)

of bodies 1 and 2 are located at xCM
1 = 1, yCM

1 = 0, and xCM
2 = 3.4488887, yCM

2 = −0.388228. In the

initial configuration, the centroidal principal reference frame of body 1 is parallel with the global reference

frame, while the centroidal principal reference frame of body 2 is rotated with θ2 = 23π/12 around an

axis perpendicular on the plane of motion. For body 1, ẋCM
1 = ẏCM

1 = θ̇CM
1 = 0, while for body 2,
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Figure 1: Double pendulum problem

ẋCM
2 = 3.8822857, ẏCM

2 = 14.4888887, and θ̇CM
2 = 10. All initial conditions are in SI units, and are

consistent with the kinematic constraint equations at position and velocity levels (Eqs.(1a) and (1b)).

The first set of numerical experiments focuses on assessing the reliability of the step size control mecha-

nism. The goal is to verify that user imposed levels of absolute and relative error are met by the simulation

results. A reference simulation is first run using a very small constant integration step-size. Other simu-

lations, run with different combinations of absolute and relative tolerances, are compared to the reference

simulation to find the infinity norm of the error, the time at which this largest error occurred, and average

error per time step. Suppose that n time steps are taken during the current simulation and that the vari-

able whose accuracy is analyzed is denoted by e. The grid points of the current simulation are denoted by

tinit = t1 < t2 < . . . < tn = tend. If N is the number of time steps taken during the reference simulation;

i.e., Tinit = T1 < T2 < . . . < TN = Tend, assume that for the quantity of interest the computed reference

values are Ej , for 1 ≤ j ≤ N . For each 1 ≤ i ≤ n, an integer r(i) is defined such that Tr(i) ≤ ti ≤ Tr(i)+1.

Using the reference values Er(i)−1, Er(i), Er(i)+1, and Er(i)+2, cubic spline interpolation algorithm is used
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to generate an interpolated value E∗
i at time ti. If r(i)− 1 ≤ 0, the first four reference points are considered

for interpolation, while if r(i)+2 ≥ N , the last four reference points are used for interpolation. The error at

time step i is defined as ∆i = E∗
i − ei . For each tolerance set k, accuracy is measured by both the maximum

∆(k) and the average ∆
(k)

trajectory errors, as well as by the percentage relative error

∆(k) = max
1≤i≤n

(∆i) , ∆
(k)

=

√√√√ 1
n

n∑

i=1

∆2
i , RelErr[%] =

∆(k)

E∗ × 100 ,

where E∗ = Ep, with p defined such that ∆(k) = ∆p. Simulations are run for tolerances between 10−2

and 10−5, a range that typically covers mechanical engineering accuracy requirements. The length of the

simulation is 2 seconds. The time variation of the angle θ1 is presented on the left of Fig.2. Notice that

body 1 eventually stabilizes in the configuration θ1 = 3π/2, which is the zero-tension angle for the RSDA.

Table 4 contains error analysis information for angle θ1. The first column contains the value of the

tolerance with which the simulation is run. Relative and absolute tolerances (Rtoli and Atoli of Eqs.(4)) are

set to 10k, and they are applied for both position and velocity error control. The second column contains the

time t∗ at which the largest error ∆(k) occurred. The third column contains the values of ∆(k). Column four

contains the relative error, and the last column shows the average trajectory error. Table 5 shows the number

of integration steps selected by the numerical integrator for different values of the tolerance parameter k.

The most relevant information for step-size control validation is ∆(k). If, for example, k = −3; i.e.,

accuracy of the order 10−3 is demanded, ∆(−3) should have this order of magnitude. It can be seen from

the results in Table 4 that this is the case for all tolerances. Note that these results are obtained with a

non-zero relative tolerance. According to Eq.(4), depending on the magnitude of the variable being analyzed,

the relative tolerance directly impacts the step-size control. Based on position results shown in Fig.2, the

relative tolerance is multiplied by a value that for θ1 oscillates between 4.0 and 6.0. Consequently, the actual

upper bound of accuracy imposed on θ1 fluctuates and reaches values up to 7 · 10−k. Thus, the step-size

controller is slightly conservative. For an explanation of this stiffness induced order reduction, the reader is

referred to [2] or [6]. In the latter reference, the local truncation error (ŷ1 − y1) in Eq.(4) is replaced by the

scaled value δ = (I − hγ∂f/∂y)−1 (ŷ1 − y1). This step-size control strategy remains to be investigated.

Error analysis is also performed at the velocity level. The time variation of angular velocity θ̇1 is shown

in Fig.2. The angular velocity of body 1 fluctuates between -10 and 7 rad/s. As a result, values of ∆(k) of

12
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Figure 2: Time Variation of orientation θ1 (Left) and of angular velocity θ̇1 (Right) for Body 1.

Table 4: Position Error Analysis for the Double Pendulum Problem.

k t∗ ∆(k) RelErr[%] ∆
(k)

-2 0.592127 5.223e-2 0.12126 3.234e-3

-3 0.599954 4.198e-3 0.00964 2.631e-4

-4 0.626135 4.916e-4 0.00108 2.946e-5

-5 1.065146 1.902e-5 0.00039 9.868e-6

up to the order 10k+1 are considered very good. Error analysis results for θ̇1 are presented in Table 6. The

step-size controller performs well, slightly on the conservative side.

The error analysis results presented suggest that the step-size controller employed is reliable, as the pre-

imposed accuracy requirements are met or exceeded by the numerical results. In order to avoid unjustified

CPU penalties, the algorithm may be improved for extremely stiff mechanical systems by adopting a modified

step-size controller proposed in [6].
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Table 5: Number of Integration Time Steps for the Double Pendulum Problem.

k -2 -3 -4 -5 -6 -7

Steps 29 49 85 148 264 467

Table 6: Velocity Error Analysis for the Double Pendulum Problem.

k t∗ ∆(k) RelErr[%] ¯∆(k)

-2 0.795548 4.061e-2 1.84434 2.348e-2

-3 0.373114 3.792e-3 0.12340 2.181e-3

-4 0.217757 8.652e-4 0.00922 3.445e-4

-5 0.186183 2.343e-4 0.00246 9.357e-5

3.2 Performance Comparison with Explicit Integrator

In order to compare the performance of the proposed implicit algorithm with a SSODE algorithm based

on a state of the art explicit integrator [6], a model of the US Army High Mobility Multipurpose Wheeled

Vehicle (HMMWV) is considered for dynamic analysis. The HMMWV shown in Fig.3 is modeled using 14

bodies, as shown in Fig.3. In this figure, vertices represent bodies, while edges represent joints connecting

the bodies of the system. Thus, vertex number 1 is the chassis, 2 and 5 are the right and left front upper

control arms, 3 and 6 are the right and left front lower control arms, 9 and 12 are the right and left rear

lower control arms, and 8 and 11 are the right and left rear upper control arms. Bodies 4, 7, 10, and 13 are

the wheel spindles, and body 14 is the steering rack. Spherical joints are denoted by S, revolute joints by R,

distance constraints by D, and translational joints by T. This set of joints imposes 79 constraint equations.

One additional constraint equation is imposed on the steering system, such that the steering angle is zero;

i.e., the vehicle drives straight. A total of 98 generalized coordinates are used to model the vehicle, which

renders 18 degrees of freedom to the model.

Stiffness is induced in the model through means of four translational spring-damper actuators (TSDA).

These TSDAs act between the front/rear and right/left upper control arms and the chassis. The stiffness
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Figure 3: The HMMWV (left) and the associated model topology (right).

coefficient of each TSDA is 2E7 N/m, while the damping coefficient is 2E6 N·s/m. For the purpose of this

numerical experiment, the tires of the vehicle are modeled as vertical TSDA elements with stiffness coefficient

296325 N/m and damping coefficient 3502 N·s/m. Finally, the dominant eigenvalue of the corresponding

SSODE has a real component of approximately -2.6E5, and a small imaginary part.

Dynamic analysis of the model is carried out for the vehicle driving straight at 10mph over a bump. The

shape of the bump is a half-cylinder of diameter 0.1m. Figure 4 shows the time variation of the vehicle

chassis height. The front wheels hit the bump at time 0.5 seconds, and the rear wheels hit the bump at time

1.2 seconds. The length of the simulation in this plot is 5 seconds. Toward the end of the simulation (after

4 seconds), due to over-damping the, chassis height stabilizes at approximately z1 = 0.71m.

The test problem is first run with an explicit integrator based on the code DEABM [6]. Algorithm 2

below outlines the explicit integration approach used for SSODE integration of the equations of motion for

the HMMWV model. The first 3 steps are identical to the ones in Algorithm 1 in [4]. Step 4 computes

the acceleration q̈, by solving the linear system of Eq.(1d). A topology-based approach [5], that takes

into account the sparsity of the coefficient matrix is used to solve for the generalized accelerations q̈. The

DDEABM integrator is then used to integrate for independent velocities v̇n, and independent positions vn

[4]. The integrator is also used to integrate for the dependent coordinates un, with the sole purpose of

providing a good starting point during Step 6 that computes un by ensuring that the kinematic position

constraint equations are satisfied; i.e., solving Φ(vn,un) = 0. Likewise, dependent velocities u̇n are the

solution of the linear system Φu(un,vn)u̇n = −Φv(un,vn)v̇n [4], which thus guarantees that the generalized
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velocities satisfy the kinematic velocity constraint equations. The dependent/independent partitioning of

the generalized coordinates is checked during Step 7.

Algorithm 2

1. Initialize Simulation

2. Set Integration Tolerance

3. While (time < time-end) do

4. Get Acceleration

5. Apply Integration Step.

Check Accuracy. Determine New Step-size

6. Recover Dependent Generalized Coordinates

7. Check Partition

8. End do

Timing results reported are obtained on an SGI Onyx computer with an R10000 processor. Computer

times required by Algorithm 2 are listed in Table 7. Results for the Rosenbrock Nystrom algorithm are

presented in Table 8.

Table 7: Explicit Integrator Timing Results for the HMMWV Problem.

Tol 10−2 10−3 10−4 10−5

1 sec 3618 3641 3667 3663

2 sec 7276 7348 7287 7276

3 sec 10865 11122 10949 10965

4 sec 14480 14771 14630 14592

Results in Table 7 are typical for the situation when an explicit integrator is used for the numerical

solution of a stiff IVP. For the stiff test problem considered, the performance limiting factor is stability of

the explicit code. For a given simulation length, any tolerance in the range 1E-2 through 1E-5 results in
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Table 8: Implicit Integrator Timing Results for the HMMWV Problem.

Tol 10−2 10−3 10−4 10−5

1 sec 5.6 13.2 40.7 172

2 sec 12.6 32.6 95 405

3 sec 13 36.3 105 422

4 sec 13.3 37 106 428

almost identical CPU times. The average explicit integration step-size turns out to be between 1E-5 and

1E-6, and it is not affected by accuracy requirements. The code is compelled to select very small step-sizes to

assure stability of the integration process, and this is the criteria for step-size selection for a broad spectrum

of tolerances. Only if extreme accuracy is imposed, does the step-size become limited based on accuracy

considerations. In this context, note that the results in Table 8 indicate that stability is of no concern for the

proposed algorithm, and solution accuracy solely determines the duration of the simulation. The integration

step-size is automatically adjusted to keep integration error within the user prescribed limits. Figure 4

shows the time variation for the integration step-size when the absolute and relative errors at position and

velocity levels are set to 10−3. The y-axis for the step-size is provided at the right of Fig.4, on a logarithmic

scale. In the lower half of the same figure, relative to the left y-axis is provided the time variation of the

chassis height. Note that when the vehicle hits the bump; i.e., when in Fig.4 the z coordinate of the chassis

increases suddenly, the step-size is simultaneously decreased to preserve accuracy of the numerical solution.

On the other hand, for the region in which the road becomes flat; i.e., toward the end of the simulation, the

integrator is capable of taking larger integration steps, thus decreasing simulation time.

4 Conclusions

A generalized coordinate partitioning based state-space implicit integration method is introduced for the

dynamic analysis of multibody systems. In the companion paper [4] the derivation of a Rosenbrock-Nystrom

family of methods for state space implicit integration was presented. Based on this, the paper defines a
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particular method based on a 4-stage order 4 L-stable Rosenbrock formula that has an order 3 embedded

formula for error control. For a 14 body 18 degree of freedom vehicle, the proposed method is almost

two orders of magnitude faster than an explicit integrator based method. The most restrictive condition

associated with the use of the Rosenbrock formula employed is the requirement of an exact integration

Jacobian. In this context, a formalism for systematically computing the state-space integration Jacobian is

presented in [4]. When providing an exact Jacobian is not feasible, a lower order W-method is suggested as

an alternative.
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Figure 1. Double pendulum problem.
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Figure 3. The HMMWV (left) and its topology representation (right).
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