Global MHD simulation and analysis of Feb. 22, 2009 THEMIS substorm event

Ping Zhu

in collaborations with

J. Raeder, K. Sakaguchi, K. Shiokawa, and C. C. Hegna

1University of Wisconsin-Madison
2University of New Hampshire
3Nagoya University

AGU Fall Meeting
San Francisco, CA
December 18, 2009
Paper SM54B-07

*Research supported by NSF Grant No. ATM-0902360.
Periodic black aurora was observed in Feb 22 2009 substorm event [Sakaguchi and Shiokawa 2009]

Optical substorm onset: Fort Yukon 0814 UT (∼ 2314 LT)
Periodical black aurora: Gillam and Sanikiluaq 0830 UT (∼ 0230 LT)
Torch structure of periodic aurora resembles “Rayleigh-Taylor finger” pattern of interchange type of modes [Sakaguchi and Shiokawa 2009]
An initial effort to explore possible connections between ionosphere aurora features and plasma sheet instabilities

Question:
- Is the periodic black aurora structure a signature or consequence of a certain plasma sheet instability or reconnection process?

Approach:
- Reconstruct the Feb 22 2009 substorm event using global MHD simulations (OpenGGCM).
- Analyze (ballooning) instabilities of near-Earth tail configuration prior to onset.
- Look for links (correlations and causal relations) between aurora structures and plasma sheet instabilities.
- Initial results focus on correlational links.
THEMIS Feb 22, 2009 substorm event: 0700-0930 UT, first onset around 0810 UT (from OpenGGCM)

- Grid: $630 \times 200 \times 300$;
 Domain $x : [20, -500]$, $(y, z) : [-36, 36]$

- Ionosphere B.C.: Coupled Thermo-Ionosphere Model
 [Fuller-Rowell et al., 1996]

- Dayside B.C.: Solar wind data from ACE
 (left: bottom panel)

- Maximum ionosphere discrete electron flux at night side indicates first onset around 0810 UT
 (left: top panel)
Ionosphere discrete e^- precipitation shows initial intensification around 0810 UT (OpenGGCM)
Timings and locations of discrete e^- precipitation intensification are consistent with observations

- **Prior to onset expansion:** initial intensification at 0810 UT (~ 2300 LT); Observation: optical onset at 0814 UT (~ 2314 LT).

- **During recovery phase:** subsequent intensification starts at 0830 UT (~ 0200 LT); Observation: periodic black aurora at 0830 UT (~ 0230 LT).
Tailward flow evolution shows plasma sheet stretching and dipolarization around onset expansion (OpenGGCM)
Early growth phase ($\sim UT0750$): Plasma sheet is highly stretched in middle tail region with multiple reconnection sites.
Pre-onset phase (\lesssim UT0810): Reconnection sites recede tailwards and near-Earth region becomes stretched.
Onset expansion phase (\sim UT0815 – 0830): Entire plasma sheet stretching stops and dipolarization starts from near-Earth region.
Recovery phase (⏰ UT0835): Dipolarization front propagates from near-tail region to mid-tail region.
Pre-onset phase, as well as other phases, near-Earth plasma sheet region ($\lesssim 15 \, R_E$) is marginally stable to ballooning.
Pre-onset phase: plasma sheet becomes highly unstable to ballooning in a narrow transition region (near-to-middle distance from Earth)
Recovery phase: entire plasma sheet returns to marginally ballooning stable state
Discussion

The relation between the tail ballooning instability and the periodic black aurora has yet to be rigorously established.

- The discrete electron flux structure in ionosphere needs to be further resolved to demonstrate the periodic aurora structure.
- 3D ballooning analysis is required to map the unstable tail region to ionosphere.
- Resolving and tracing the dynamic ballooning process in global MHD simulations remains challenging.
Summary

- The Feb 22 2009 substorm event has been reconstructed using ACE solar wind data and OpenGGCM simulations.
 - The initial intensification of discrete electron flux (DEF) in ionosphere is consistent with observations of onset in both time and location.
 - Subsequent intensification of DEF in recovery phase may relate to the appearance of black aurora in observations.

- Ballooning instability of the reconstructed configurations during the pre-onset and recovery phases are evaluated.
 - Tail configuration is most ballooning unstable in stretched plasma sheet region ($\sim 20-25 \, R_E$).
 - Tail configuration is most ballooning unstable in late growth, pre-onset phase.
 - The timing suggests the periodic aurora observed in recovery phase could be developed from the most unstable tail ballooning instability started in pre-onset phase.
Acknowledgment

We would like to thank Dr. Ruth Skoug from Los Alamos National Laboratory for assistance in obtaining the ACE SWEPAM Level 2 solar wind data. P. Zhu is grateful to Drs. Wenhui Li, Douglas Larson, Kai Germaschewski, and Yasong Ge from University of New Hampshire for their helps on using OpenGGCM.
Ballooning analysis starts with ideal MHD ballooning mode equations in a general configuration

For general magnetic configuration $B = \nabla \psi \times \nabla \alpha$

$$\rho B^2 \partial^2_{t} \xi_{\parallel} = B \partial_l \left[\frac{\gamma p}{1 + \gamma \beta} \left(B \partial_l \xi_{\parallel} - 2 e_{\perp} \cdot \kappa \xi_{\psi} \right) \right]$$

$$\rho |e_{\perp}|^2 \partial^2_{t} \xi_{\psi} = B \partial_l (|e_{\perp}|^2 B \partial_l \xi_{\psi}) + 2 e_{\perp} \cdot \kappa e_{\perp} \cdot \nabla p \xi_{\psi} + \frac{2 \gamma p e_{\perp} \cdot \kappa}{1 + \gamma \beta} \left(B \partial_l \xi_{\parallel} - 2 e_{\perp} \cdot \kappa \xi_{\psi} \right)$$

where

$$e_{\perp} \equiv e_{\psi} \cdot (I - bb) = \frac{\nabla \alpha \times B}{B^2}, \quad \kappa \equiv b \cdot \nabla b.$$

For ballooning eigenmodes $\partial^2_{t} \rightarrow \Gamma^2_{b}$, solve above two coupled ODEs along each flux tube with proper end boundary conditions to find growth rate Γ^2_{b}.

Quasi-static condition need be satisfied in order to apply conventional ballooning analysis

- Quasi-static condition:

\[
\frac{\tau_A^2}{\tau_{eq}^2} = \frac{L_{eq}}{B^2} |J \times B - \nabla p| \ll 1, \quad \text{or} \quad \frac{|J \times B - \nabla p|}{\rho L_{eq}} \ll \Gamma_b^2
\]

where \(L_{eq} \approx L_p \), and \(L_p^{-1} = |d \ln p / dx| \).

- The MHD ballooning time scale \(\tau_A \) is an order of magnitude faster than the configuration evolution time scale \(\tau_{eq} \) prior to onset in the near-tail region reconstructed from OpenGGCM simulation:

\[
\tau_A^2 \sim 10^2 \ll \tau_{eq}^2 \sim 10^3 - 10^4
\]
Ballooning analyses are performed on reconstructed near-tail configurations

- For 2D magnetotail configuration \(\mathbf{B} = \nabla \psi(x, z) \times \hat{y} \), near marginal stability, under quasi-static condition and for line-tied boundary condition, the coupled ballooning mode equations is reduced to one equation

\[
\frac{\rho}{B^2} \frac{\partial^2 \xi}{\partial t^2} = B \frac{\partial}{\partial l} \left(\frac{1}{B} \frac{\partial \xi}{\partial l} \right) + \frac{2\kappa \psi}{B} \frac{dp}{d\psi} \xi - \frac{4\gamma p \kappa \psi}{B} \frac{\langle \kappa \psi \xi \rangle}{\langle 1 + \gamma \beta \rangle}
\]

or \(\Gamma_b^2 = -\Gamma_{ben}^2 + \Gamma_{int}^2 - \Gamma_{com}^2 \)

where in local approximation

\[
\Gamma_{int}^2 = \frac{2\kappa \psi}{B} \frac{dp}{d\psi}, \quad \Gamma_{ben}^2 \lesssim \left(\frac{u_A}{R_E} \right)^2 = \frac{B^2}{\rho R_E^2}.
\]

- The time scale of bulk flow effects: \(\Gamma_{con}^2 \simeq (u_x/L_p)^2 \).