Problem 1 (35 points)

A tubular post of square cross section supports a horizontal platform.

The tube has outer dimension \(b = 6 \) in. and wall thickness \(t = 0.5 \) in. The platform has dimensions 6.75 in. \(\times \) 24.0 in. and supports a uniformly distributed load of 20 psi acting over its upper surface. The resultant of this distributed load is a vertical force \(P_1 \):

\[P_1 = (20 \text{ psi})(6.75 \text{ in.} \times 24.0 \text{ in.}) = 3240 \text{ lb} \]

This force acts at the midpoint of the platform, which is at distance \(d = 9 \) in. from the longitudinal axis of the post. A second load \(P_2 = 800 \) lb acts horizontally on the post at height \(h = 52 \) in. above the base.

Determine the principal stresses and maximum shear stresses at points \(A \) and \(B \) at the base of the post due to the loads \(P_1 \) and \(P_2 \) combined.

Solution:
Problem 2 (25 points) Find the reactions $R_A, M_A, \text{ and } R_B$ due to the load P. Assume that the bar has inertia I and Young’s modulus E. Do you get the expected reactions in the limit $k \to 0$. You may use the information given on the right.

\[y = \frac{P}{6EI} \left(x^3 - 3Lx^2 \right) \]

Solution:
Problem 3 (15 points) The plastic tube with outer diameter 120 mm, and thickness 5 mm, carries the 550-N load in addition to an internal pressure of 2 MPa. Find the maximum shear, principal stresses and principal planes in the tube at
(a) Element K
(b) Element H

Continue your work on reverse side
Problem 4 (15 points): A car of mass m and velocity v strikes a stopper bar whose one end (closest to the car) is free and the other is rigidly mounted to wall. If the diameter of the circular bar is d and its length is L, find the velocity of the car at which the bar will first buckle.

Solution:
Problem 5 (10 points)

A steel rod of diameter 15 mm is held snugly (but without any initial stresses) between rigid walls by the arrangement shown in the figure.

Calculate the temperature drop ΔT (degrees Celsius) at which the average shear stress in the 12-mm diameter bolt becomes 45 MPa. (For the steel rod, use $\alpha = 12 \times 10^{-6}$°C and $E = 200$ GPa.)

Solution: