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Abstract. Sensitivity-based strategies for on-line moving horizon estimation
(MHE) and nonlinear model predictive control (NMPC) are presented both
from a stability and computational perspective. These strategies make use of
full-space interior-point nonlinear programming (NLP) algorithms and NLP
sensitivity concepts. In particular, NLP sensitivity allows us to partition the
solution of the optimization problems into background and negligible on-line
computations, thus avoiding the problem of computational delay even with
large dynamic models. We demonstrate these developments through a dis-
tributed polymerization reactor model containing around 10,000 differential
and algebraic equations (DAEs).

Keywords: large-scale, MHE, NMPC , nonlinear programming, sensitivity,
interior-point methods, sparse linear algebra.

1 Introduction

General model-based control frameworks based on MHE and NMPC repre-
sent an attractive alternative for the operation of complex processes. These
frameworks allow the incorporation of highly sophisticated dynamic process
models and the direct handling of multivariable interactions and operational
constraints. In addition, the potential of incorporating detailed first-principles
models allows a closer interaction of the controller with traditional economic
optimization layers such as real-time optimization (RTO). Crucial enabling
developments for this include: a) increased process understanding leading to
highly-detailed first-principles dynamic process models, b) enhanced formu-
lations with stability and robustness guarantees, c) advances in numerical
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strategies for DAE-constrained optimization and NLP algorithms, and d)
advances in computational resources including the availability of parallel and
multi-core technology.

In this work, special emphasis is made on the numerical solution aspects
and performance of combined MHE and NMPC strategies. In particular, a
general solution framework based on interior-point NLP solvers and sensi-
tivity concepts is considered. In the following section, we introduce some
basic concepts and notation and describe specific formulations of the MHE
and NMPC nonlinear programming problems. In Section 3 we discuss advan-
tages of interior-point NLP solvers and present some basic NLP sensitivity
results. In Section 4 we derive advanced-step approximation strategies for
MHE and NMPC, based on NLP sensitivity to reduce on-line computational
time. We also discuss their general stability and performance properties, es-
pecially when both are applied together. In Section 5, the potential of the
combined MHE and NMPC solution framework is demonstrated on a large-
scale case study involving the simultaneous monitoring and control of a dis-
tributed low-density polyethylene tubular reactor. The paper then closes with
general conclusions and recommendations.

2 MHE and NMPC Formulations

We begin with a discrete-time dynamic model of an uncertain plant of the
form,

xk+1 = f(xk, uk) + ξk, yk+1 = χ(xk+1) + vk+1 (1a)

where xk ∈ �nx is the true plant state at time instant tk and uk ∈ �nu

is the implemented control action. The nonlinear dynamic model f(·, ·) :
�nx+nu → �nx is the nominal model and satisfies f(0, 0) = 0. The observed
output yk ∈ �ny with ny ≤ nx is related to the state-space xk through
the nonlinear mapping χ(·) : �nx → �ny . The true plant deviates from the
nominal prediction due to the process disturbance ξk ∈ �nx and measurement
noise vk ∈ �ny .

Assume that the plant is currently located at sampling time tk with the
output and input measurements ηmhe

k := {yk−N , ..., yk, uk−N , ..., uk−1} dis-
tributed over a horizon containing N steps. The output measurement covari-
ance is given by R ∈ �ny×ny . The a priori estimate of the past state of the
plant is denoted as x̄k−N and has an associated covariance Π0,k ∈ �nx×nx .
Using this information, we would like to compute an estimate x̃k of the cur-
rent state xk. In order to do this, we solve the MHE problem,

M(ηmhe
k ) min

z0
‖z0 − x̄k−N‖2

Π−1
0,k

+
N∑

l=0

‖yk+l−N − χ(zl)‖2
R−1 (2a)

s.t. zl+1 = f(zl, uk+l−N ), l = 0, ..., N − 1 (2b)
zl ∈ X (2c)
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All the MHE problem data can be summarized in the vector ηmhe
k . Symbols

zl ∈ �nx are internal decision variables of the optimization problem. This
problem has nx degrees of freedom corresponding to z0. From the solution
trajectory, {z∗0 , ..., z∗N}, we obtain the optimal estimate x̃k = z∗N with as-
sociated estimation error ek := x̃k − xk. Using this estimate, we define the
problem data ηmpc

k := x̃k for the NMPC problem,

P(ηmpc
k ) min

vl

Ψ(zN ) +
N−1∑

l=0

ψ(zl, vl) (3a)

s.t. zl+1 = f(zl, vl) l = 0, . . .N − 1 (3b)
z0 = x̃k (3c)
zl ∈ X, vl ∈ U (3d)

where vl ∈ �nu are internal decision variables. This problem has (N−1)×nu

degrees of freedom corresponding to vl, l = 0, ..., N −1. Here, we assume that
the states and controls are restricted to the domains X and U, respectively.
The stage cost is defined by ψ(·, ·) : �nx+nu → �, while the terminal cost
is denoted by Ψ(·) : �nx+nu → �. The control action is extracted from the
trajectory optimal trajectory {z∗0 ...z∗N v∗0 , ..., v

∗
N−1} as uk = v∗0 := h(x̃k), and

h(·) denotes the feedback law. Note that this control action is inaccurate
because the true state of the plant is xk and not the estimate x̃k. That is,
the estimation error acts as an additional disturbance. At the next time, the
plant will evolve as,

xk+1 = f(xk, h(x̃k)) + ξk, yk+1 = h(xk+1) + vk+1 (4)

With this, we shift the measurement sequence one step forward to obtain
ηmhe

k+1 := {yk−N+1, ..., yk+1, uk−N+1, ..., uk}, and we solve the new MHE prob-
lem. Having the new state estimate x̃k+1 we solve the next NMPC problem.

Note that the above formulations are rather simplified. This makes them
convenient for the conceptual analysis in subsequent sections. In practical ap-
plications, both NMPC and MHE problems are solved as general continuous-
time DAE-constrained optimization problems. In this work, we assume that
a full discretization approach is used to derive the discrete-time NMPC and
MHE formulations. In this case, these NLP problems will be sparse. This is
a crucial property to be exploited in the following sections.

A problem that is normally encountered in model-based control frame-
works is that there exists a computational feedback delay equal to the solu-
tion time of the MHE and NMPC problems. In large-scale applications (say
nx ≈ 100− 10, 000), this computational delay might dominate the time con-
stant of the plant and destabilize the process. Therefore, we seek to derive
strategies to reduce the on-line computational time. The first crucial com-
ponent of these strategies is a fast NLP algorithm. In the next section, we
discuss some of the advantages that interior-point NLP solvers offer for the
solution of very large problems.



422 V.M. Zavala and L.T. Biegler

3 Full-Space Interior-Point NLP Solvers

The NLP problems (2) and (3) can be posed in the general form,

N (η) min
x

F (x, η) (5a)

s.t. c(x, η) = 0 (5b)
x ≥ 0 (5c)

where x ∈ �nx is variable vector containing all the states and controls and η
is the data vector.

Full-space interior-point solvers have become a popular choice for the
solution of large-scale and sparse NLPs. In particular, the solvers LOQO,
KNITRO and IPOPT are widely used. In this work, we use IPOPT, an
open-source NLP solver originally developed in our research group [1]. In
interior-point solvers, the inequality constraints of problem (5) are handled
implicitly by adding barrier terms to the objective function,

min
x

F (x, η) − μ�

nx∑

j=1

ln(x(j)), s.t. c(x, η) = 0 (6)

where x(j) denotes the jth component of vector x. Solving (6) for a decaying
sequence of μ� → 0, �→ ∞ results in an efficient strategy to solve the original
NLP (5). IPOPT solves the Karush-Kuhn-Tucker (KKT) conditions of this
sequence of barrier problems (6),

∇xF (x, η) + ∇xc(x, η)λ − ν = 0 (7a)
c(x, η) = 0 (7b)
X ·V e = μ�e (7c)

where X = diag(x),V = diag(ν) and e ∈ �nx is a vector of ones. Symbols
λ ∈ �nλ and ν ∈ �nx are Lagrange multipliers for the equality constraints
and bounds, respectively. To solve this system of nonlinear equations we
apply an exact Newton method with the iteration sequence initialized at
sT

o := [xT
o λT

o νT
o ]. At the ith iteration, the search direction Δsi = si+1 − si

is computed by linearization of the KKT conditions (7),
⎡

⎣
Hi Ai −Inx

Ai
T 0 0

Vi 0 Xi

⎤

⎦

⎡

⎣
Δxi

Δλi

Δνi

⎤

⎦= −
⎡

⎣
∇xF (xi)+Aiλi−νi

c(xi)
XiVie− μ�e

⎤

⎦ (8)

where Ai := ∇xc(xi, η), Hi ∈ �nx×nx is the Hessian of the Lagrange function
LF (xi, η) + λT

i c(xi, η) − νi
T xi and Inx denotes the identity matrix.

We provide exact Hessian and Jacobian information through the mod-
eling platform AMPL. With this, Newton’s method guarantees fast local
convergence and is able to handle problems with many degrees of freedom
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without altering these convergence properties. After solving a sequence of
barrier problems for μ� → 0, the solver returns the optimal solution triplet
sT
∗ = [xT

∗ λT
∗ νT

∗ ] which implicitly defines the active-set (set of variables
satisfying x(j) = 0).

3.1 Computational Issues

Solving the KKT system (8) is the most computationally intensive step in
the solution of the NLP. A crucial advantage that interior-point solvers of-
fer over active-set solvers is that the structure of the KKT matrix in (8)
does not change between iterations. This facilitates the design of tailored lin-
ear algebra strategies to exploit special structures. For instance, the KKT
matrix arising from DAE-constrained optimization problems has a natural
forward structure (almost-block-diagonal) in time and classical Riccati-like
recursions and condensing techniques are often applied, where the complex-
ity of these solution strategies scales linearly with the horizon length N , but
cubically with the number of states nx and controls nu. On the other hand,
specialized strategies have been developed that reduce the cubic computa-
tional complexity and also preserve numerical stability in the face of unstable
dynamics [3, 4].

In IPOPT, we use a symmetric indefinite factorization of the KKT matrix
(with Δνi eliminated). With this, we exploit only the sparsity pattern of the
KKT matrix. The computational complexity of this strategy is in general
very favorable, scaling nearly linearly and at most quadratically with the
overall dimensions of the NLP (e.g. length of prediction horizon, number
of states and number of degrees of freedom). This general approach also
remains stable in the face of unstable dynamics. However, significant fill-in
and computer memory bottlenecks might arise during the factorization step if
the sparsity pattern is not properly exploited. In order to factorize the KKT
matrix, we use the linear solver MA57 from the Harwell library [5]. Since the
structure of the KKT matrix does not change between iterations, the linear
solver needs to analyze the sparsity pattern only once. During this analysis
phase, the linear solver permutes the matrix to reduce fill-in and computer
memory requirements in the factorization phase. Two reordering strategies
are normally used in MA57. The first is an approximate minimum degree
(AMD) ordering algorithm while the second is a nested dissection algorithm
based on the multi-level graph partitioning strategy, implemented in Metis
[6]. For very large-scale problems, these nested dissection techniques excel
at identifying high-level (coarse-grained) structures and thus play a crucial
role in the factorization time and reliability of the linear solver. These notable
advances in numerical linear algebra can dramatically expand the application
scope of NMPC and MHE.

IPOPT also applies a regularization scheme to the KKT matrix in order
to account for directions of negative curvature and rank-deficient Jacobians
which are commonly encountered in highly nonlinear NLPs and/or ill-posed
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formulations. Directions of negative curvature are detected implicitly through
the linear solver, which returns the so-called inertia of the KKT matrix (num-
ber of positive, negative and zero eigenvalues). If the inertia is correct at the
solution, no regularization is necessary and we can guarantee that the opti-
mal point is a well-defined minimum satisfying strong second order conditions
(SSOC) and the linear independence qualification of the constraints (LICQ)
[7]. In the context of NMPC and MHE, checking for SSOC is important
since this is directly related to properties of the dynamic system such as
controllability and observability. Consequently, checking for SSOC through
the inertial properties of the KKT matrix is another important advantage
of using a general factorization strategy, as opposed to other tailored linear
algebra strategies.

3.2 NLP Sensitivity and Warm-Starts

Problem (5) is parametric in the data η and the optimal primal and dual
variables can be treated as implicit functions of η. For a sufficiently small
μ�, the KKT conditions (7) of the barrier problem (6) can be expressed as
ϕ(s(η), η) = 0 and we define K∗(η0) as the KKT matrix in (8).

We are interested in computing fast approximate solutions for neighboring
problems around an already available nominal solution s∗(η0). In order to do
this, we make use of the following classical results,

Theorem 1. (NLP Sensitivity) [7, 8]. If F (·) and c(·) of the parametric prob-
lem N (η) are twice continuously differentiable in a neighborhood of the nomi-
nal solution s∗(η0) and this solution satisfies LICQ and SSOC, then s∗(η0) is
an isolated local minimizer of N (η0) and the associated Lagrange multipliers
are unique. Moreover, for η in a neighborhood of η0 there exists a unique,
continuous and differentiable vector function s∗(η,N) which is a local min-
imizer satisfying SSOC and LICQ for N (η). Finally, there exists a positive
Lipschitz constant L such that ‖s∗(η,N)−s∗(η0, N)‖ ≤ L‖η−η0‖ along with
a positive Lipschitz constant LF such that the optimal values F (η) and F (η0)
satisfy ‖F (η) − F (η0)‖ ≤ LF‖η − η0‖.
Under these results, a step Δs(η) computed from,

K∗(η0)Δs(η) = − (ϕ(s∗(η0), η) − ϕ(s∗(η0), η0))
= −ϕ(s∗(η0), η). (9)

with Δs(η) = s̃(η) − s∗(η0), is a Newton step taken from s∗(η0) towards the
solution of a neighboring problem N (η). Consequently, s̃(η) satisfies,

‖s̃(η) − s∗(η)‖ ≤ Ls‖η − η0‖2 (10)

with Ls > 0. Furthermore, since the KKT matrix K∗(η0) is already available
from the solution of the nominal problem N (η0), computing this step requires
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only a single backsolve which can be performed orders of magnitude faster
than the factorization of the KKT matrix.

Since the approximate solution s̃(η) is accurate to first order, we can use
it as the initial guess so(η) to warm-start the NLP N (η). For instance, if the
perturbation (η− η0) does not induce an active-set change, we can fix μ to a
small value (e.g. say 1× 10−6) and reuse the KKT matrix K∗(η0) to perform
fast fixed-point iterations on the system,

K∗(η0)Δsi(η) = −ϕ(si(η), η) (11)

with so = s∗(η0). With this, we can reduce the primal and dual infeasibility
of the perturbed problem N (η) until no further progress can be made with
the fixed KKT matrix. For sufficiently small perturbations, these fast fixed-
point iterations can converge to the solution of the perturbed problem s∗(η).
However, for large perturbations, the KKT matrix needs to be reevaluated
and refactorized.

When the perturbation η − η0 induces an active-set change, the lineariza-
tion of the complementarity relaxation (7c) contained in the nominal KKT
matrix K∗(η0) will drive the first Newton iteration outside of the feasible
region and the sensitivity approximation is inconsistent. To compute a fast
sensitivity approximation, one could reuse the factorization of the KKT ma-
trix through a Schur complement scheme to correct the active-set (e.g. add
slack variables and constraints to drop and fix variables and bound multipli-
ers) [9]. This is equivalent to an active-set sequential quadratic programming
(SQP) iteration. Fixed-point iterations can also be performed in this way.

In the context of the proposed MHE and NMPC formulations, we define
the optimal solutions,

s∗MHE := {z∗0 , ..., z∗N−1, z
∗
N , λ

∗
1, ..., λ

∗
N−1, λ

∗
N} (12a)

s∗MPC := {z∗0 , ..., z∗N−1, z
∗
N , v

∗
0 , ..., v

∗
N−2, v

∗
N−1, λ

∗
0, ..., λ

∗
N−1, λ

∗
N}. (12b)

The associated sensitivity approximations are denoted as s̃MHE and s̃MPC ,
respectively, and the corresponding warm-start vectors as so

MHE and so
MPC .

Notice that we have not included the bound multipliers in order to simplify
the presentation.

4 Advanced-Step MHE and NMPC Strategies

It is possible to minimize the on-line time required to solve the MHE problem
and then the NMPC problem to two fast backsolves using an advanced-step
framework [2, 10]. Imagine that at time tk we know the control action uk and
we would like to obtain an estimate of the future state xk+1 but we don’t know
the future measurement yk+1. Nevertheless, we can use the current estimate
x̃k and control uk to predict the future state and associated measurement,
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x̄k+1 = f(x̃k, uk), ȳk+1 = χ(x̄k+1) (13)

to complete the problem data η̄mhe
k+1 := {yk+1−N , ..., ȳk+1, uk−N , ..., uk} and

start the solution of the predicted problem M(η̄mhe
k+1 ). Simultaneously, we

can use the predicted state to define η̄mpc
k+1 := x̄k+1 and start the solution of

the predicted problem P(η̄mpc
k+1 ). Note that both problems are decoupled so

this can be done simultaneously and thus reduce the sampling time. At the
solution of these problems, we hold the corresponding KKT matrices Kmhe

∗
and Kmpc

∗ .
Once the true measurement yk+1 becomes available, we compute a fast

backsolve with Kmhe
∗ to obtain an approximate state estimate x̃as

k+1 which
differs from the optimal state estimate x̃k+1 and the true state xk+1. Using
the approximate state estimate we perform a fast backsolve with Kmpc

∗ to
obtain the approximate control action uk+1 = has(x̃as

k+1). Of course, this also
differs from the ideal NMPC control h(x̃k+1).

To warm-start the background problems at the next sampling time, we use
the approximate solutions s̃MHE and s̃MPC to generate the shifted warm-
start sequences for the next problems M(η̄mhe

k+2 ) and P(η̄mpc
k+2 ) [11],

so
MHE := {z̃1, ..., z̃N , f(x̃as

k+1, uk+1), λ̃2, ..., λ̃N , 0} (14a)

so
MPC := {z̃1, ..., z̃N , z̃N , ṽ1, ..., ṽN−1, ṽN−1, λ̃1, ..., λ̃N , λ̃N}. (14b)

from which we update the KKT matrices in between sampling times. Note
that the approximate solutions s̃MHE and s̃MPC can also be refined in back-
ground using fixed-point iterations with Kmhe∗ and Kmpc

∗ before using them to
generate the warm-start sequences. We summarize the proposed framework
for the advanced-step MHE and NMPC strategies, asMHE and asNMPC,
respectively, as follows:

In background, between tk and tk+1:

1. Use current estimate x̃as
k and control uk to predict the future state x̄k+1 =

f(x̃as
k , uk) and corresponding output measurement ȳk+1 = χ(x̄k+1).

2. Define the data η̄mhe
k+1 = {yk+1−N ...yk, ȳk+1, uk+1−N , ..., uk} and η̄mpc

k+1 =
x̄k+1. Use the available warm-start points so

MHE and so
MPC to solve the

predicted problems MN (η̄mhe
k+1 ) and PN (η̄mhe

k+1 ).
3. Hold the KKT matrices Kmhe∗ and Kmpc

∗ .

On-line, at tk+1:

1. Obtain the true measurement yk+1 and define the true MHE data ηmhe
k+1 .

Reuse factorization of Kmhe
∗ to quickly compute s̃MHE from (9) and ex-

tract x̃as
k+1.

2. Use x̃as
k+1 to define the true NMPC problem data ηmpc

k+1 . Reuse factorization
of Kmpc

∗ to quickly compute s̃MPC from (9) and extract uk+1 = has(x̃as
k+1).

3. If necessary, refine s̃MHE and s̃MPC . Generate the warm-starts so
MHE and

so
MPC , set k := k + 1, and return to background.
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4.1 Stability Issues

It is clear that both the state estimate and the associated control action are
suboptimal due to the presence of NLP approximation errors. Here, we are
interested in assessing the impact of these errors in the stability of the closed-
loop system. From the controller point of view, we are interested in finding
sufficient conditions under which the closed-loop remains stable in the face of
disturbances and NLP sensitivity errors. Due to space limitations we outline
the main results here and refer the interested reader to [2] for more details.

To start the discussion, we first note that solving the predicted prob-
lem P(x̄k+1) in the asNMPC controller is equivalent to solving the extended
problem,

PN+1(η
mpc
k ) min

vl

Ψ(zN ) + ψ(xk, uk) +
N−1∑

l=0

ψ(zl, vl) (15a)

s.t. zl+1 = f(zl, vl) l = 0, . . .N − 1 (15b)
z0 = f(xk, uk) (15c)
zl ∈ X, vl ∈ U (15d)

with fixed xk, uk = h(xk) and ηmpc
k = {xk, h(xk)}. For the optimal or

ideal NMPC controller (instantaneous optimal solutions), we consider the
neighboring costs of the extended problems with perfect state information
J

h(xk)
xk := JN+1(xk, h(xk)) and Jh(xk+1)

xk+1 := JN+1(xk+1, h(xk+1)) as reference
points. As observed by Muske and Rawlings [12], since the implemented con-
trol action is based on the state estimate x̃k coming from MHE and not on
the true state xk, we consider this as an additional disturbance to the closed-
loop system through the cost Jh(x̂k+1)

x̂k+1
where x̂k+1 = f(xk, h(x̃k)) + ξk. From

Lipschitz continuity of the cost function we have,

|Jh(x̂k+1)
x̂k+1

− Jh(xk+1)
xk+1

| ≤ LJLfLh‖xk − x̃k‖.

Explicit bounds and convergence properties on the estimator error ‖xk − x̃k‖
can be established for the MHE formulation (2) [15]. Moreover, we can also
treat this error as another disturbance ξk and define x̃k := xk + ξk. This
allows us to restate the following robustness result for the combined asMHE
and asNMPC strategies.

Theorem 2 (Theorem 6 in [2] ). Assume that the NLPs for (2) and (3) can
be solved within one sampling time. Assume also that nominal and robust sta-
bility assumptions for ideal NMPC hold (see [2]), then there exist bounds on
the noise ξ and v for which the cost function JN+1(x), obtained from the com-
bined asMHE-asNMPC strategy, is an input to state stable (ISS) Lyapunov
function, and the resulting closed-loop system is ISS stable.
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5 Case Study

We demonstrate the performance of the proposed advanced-step framework
on a low-density polyethylene (LDPE) tubular reactor process. A schematic
representation of a typical multi-zone LDPE reactor is presented in Fig-
ure 1. In these reactors, high-pressure (2000-3000 atm) ethylene polymer-
izes through a free-radical mechanism in the presence of peroxide initiators,
which are fed at multiple zones in order to start and stop the polymeriza-
tion. The large amounts of heat produced by polymerization are removed
at each zone using cooling water, along with multiple feeds of ethylene that
cool the ethylene-polymer reacting mixture flowing inside the reactor core.
Initiator flow rates, ethylene side-streams flow rates and temperatures, and
the cooling water inlet temperatures and flow rates can be manipulated to
achieve an axial reactor temperature profile that produces a desired polymer
grade. A common problem in these reactors is that polymer accumulates (i.e.,
fouls) on the reactor walls. The resulting fouling layer blocks heat flow to the
jacket cooling water and can be seen as a persistent dynamic disturbance.
In the absence of a suitable control system, this fouling layer will eventually
lead to thermal runaway. A centralized model-based control strategy based
on a first-principles reactor model can deal effectively with fouling monitor-
ing, zone control decoupling and direct optimization of the overall process
economics (e.g. maximize production, minimize energy consumption). Nev-
ertheless, LDPE reactor models consist of very large sets of PDAEs that
describe the evolution of the reactor mixture and of the cooling water tem-
perature along the axial and time dimension. After axial discretization, a
typical LDPE reactor model can easily contain more than 10,000 DAEs.

An MHE estimator and an NMPC controller based on first-principles
LDPE reactor models have been reported in [13, 14]. While these reports
stress the benefits of these strategies for the LDPE process, little emphasis
has been placed on the computational limitations associated to their on-line
solution. Here, we consider these issues through the proposed advanced-step
control framework where we effectively minimize the on-line computation
with negligible approximation errors. We simulate the scenario in which the
reactor is fouled and cleaned over time, by ramping the reactor heat-transfer
coefficients (HTCs) down and up. Because this effect is directly reflected
through HTCs in the LDPE reactor model, we do not estimate the process
disturbance ξk, and instead use the MHE estimator to estimate the HTCs

Fig. 1 Schematic representation of multi-zone LDPE tubular reactor
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Fig. 2 Performance of advanced-step MHE and NMPC in LDPE case study

and the unmeasured model states (e.g. wall temperature profile) at each time
step. For the MHE estimator, yk consists of multiple measurements of the re-
actor core temperature and the output jacket temperatures in each zone. The
objective of the NMPC controller is to use the estimated reactor state x̃as

k to
drive the axial reactor temperature profile to the specified target profile. In
order to do this, the NMPC controller uses the multiple inputs distributed
along the reactor to obtain uk = has(x̃as

k ). In this simulated scenario, we gen-
erate the plant response xk from the model with the true HTCs. In addition,
the plant is initialized at a different state from that of the NMPC controller.
Finally, we corrupt the output measurements with Gaussian noise.

Since the plant response differs from that of the NMPC controller pre-
diction and we introduce noise, the asMHE estimator will see a difference
between the measured and the predicted outputs (see top graph of Figure
2) and will correct on-line using NLP sensitivity. We have found that the
approximation errors are negligible and the asMHE estimator has almost
identical convergence properties to that of the ideal MHE estimator. In the
middle graph of Figure 2, we see that while the estimate of the reactor wall
profile is inaccurate at t0, the dashed and solid lines coincide by t10, and
the asMHE estimator converges to the true reactor wall profile (and the one
obtained from ideal MHE) using reactor core measurements in about 10 time
steps. Using the estimated states and HTCs, the asNMPC controller then up-
dates the predicted state on-line. In the bottom graph of Figure 2 we present
the closed-loop response of one of the jacket water inlet temperatures for the
asNMPC controller and its ideal NMPC counterpart. As can be seen, both
control actions are identical. In this graph we can also appreciate how the
HTC cycles influence the controller response.

In the top graph of Figure 3 we present the total wall-clock time required
to refine the perturbed solution, generate the warm-start point and solve the
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Fig. 3 Computational results. Background tasks NMPC (top). Background tasks
MHE (middle). Scale-up of NMPC problem (bottom)

background NMPC problem. This time also includes some overhead coming
from I/O communication tasks and from AMPL, which requires some time
to generate the derivative information before calling the NLP solver. A pre-
diction horizon of N = 10 time steps (20 minutes) and sampling times of
2 minutes have been used. The NMPC problem consists of an NLP with
80,950 constraints and 370 degrees of freedom. As can be seen, the overall
background time is around 60 seconds and is well below the specified sampling
time. A single factorization of the KKT matrix takes 15.34 seconds, a single
fixed-point iteration requires 0.1 seconds, and an average of 5 fixed point
iterations are required to solve the NLP. In the middle graph of Figure 3, we
present total background times for the MHE estimator. The estimator is ini-
tialized in batch mode (accumulate measurements until an estimator horizon
of N time steps is filled). Once the estimation horizon is complete, the back-
ground tasks take around 70 seconds to be completed. The MHE problem
consists of an NLP with 80,300 constraints and 648 degrees of freedom. One
fixed-point iteration requires 0.12 seconds and an average of 10 fixed point it-
erations solve the NLP. In the bottom graph of Figure 3, we present scale-up
results of the solution time for the NMPC problem with increasing horizon
length. We compare the impact of AMD and nested dissection sparse matrix
reordering on the solution time of the background NLP problem (without
refinement or overhead). The multi-level nested dissection strategy is more
efficient here and achieves a linear scale-up. Using this strategy, a N = 30
NMPC problem with 242,850 constraints and 1,110 degrees of freedom is
solved in around 2 minutes, the factorization of the KKT matrix takes 32.31
seconds and a fixed-point iteration requires 0.33 seconds. The AMD strat-
egy shows quadratic scale-up and the largest problem requires 4 minutes.
This difference can be attributed to the fact that the Metis nested dissection
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algorithm is much more efficient in identifying coarse-grained structures in
the NMPC problem (LDPE multi-zone model, DAE forward structure, etc.),
while AMD tends to focus on fine-grained structures. All calculations were
obtained using a quad-core Intel processor running Linux at 2.4 GHz.

6 Conclusions

In this work, we present computational strategies for MHE and NMPC prob-
lems. In particular, a general solution framework based on interior-point NLP
solvers and sensitivity concepts is considered. We emphasize that exploiting
the overall sparsity pattern of the KKT matrix arising in NMPC and MHE
problems leads to a computationally efficient and stable strategy to compute
the Newton step. We analyze the impact of different reordering techniques
of the KKT matrix on the factorization time and computer memory limita-
tions. In particular, we present NLP sensitivity-based strategies for MHE and
NMPC that reduce the on-line computation time to only two fast backsolves.
This negligible computation effectively removes the problem of computational
delay even for very large NLP models. Finally, we discuss stability issues of
the NMPC controller in the face of sensitivity errors and demonstrate the
developments in a distributed polymerization reactor process, where highly
accurate solutions can be obtained in a negligible amount of time.
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