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ABSTRACT

We present an utopia-tracking multiobjective optimiza-
tion strategy to resolve conflicting objectives in real-time
energy management. Conflicts arise frequently from the
need to balance economic and noneconomic metrics such
as energy demand and occupant comfort. We demon-
strate that the proposed approach leads to better perfor-
mance compared with the traditional weighting approach.
In particular, we demonstrate that improper adjustment
of weights can lead to large excursions in performance.
The proposed approach automatically locates the opti-
mal weights and does not require the computation of the
Pareto front, making it ideal for real-time implementation.

INTRODUCTION

Optimization-based energy management is becoming
commonplace (Zavala et al. 2010; Kolokotsa et al. 2009;
K. Marik and Vass 2011; Ward et al. 2008; Henze, Fels-
mann, and Knabe 2004; Oldewurtel et al. 2010; Mahdavi
2001; Huang and Lam 1997). These systems use a build-
ing model coupled to an optimization engine to compute
optimal operating conditions that minimize/maximize a
given performance objective as internal and external
building conditions change in time. A problem faced by
these systems is that they need to balance economic met-
rics with metrics that do not have a direct translation to
economic value, such as occupant thermal comfort and
health (e.g., air quality). Other metrics typical in control
systems include robustness (e.g., constraint violation) and
equipment wearing (e.g., actuators).

Thermal comfort is typically controlled by forcing the
control system to track temperature and relative humid-
ity set-points as tightly as possible. Computationally, this
is achieved by tuning the relative weights of the com-
fort and energy objectives in the optimization formula-
tion. We claim that this approach can seriously impact
performance when the Pareto front is steep (improving
one objective strongly affects the other). In addition, the
weights strongly depend on the building conditions. Con-
sequently, fixing weights throughout daily, weekly, and
seasonal cycles can lead to large excursions in perfor-
mance. Another issue is that existing approaches deter-
mine optimal weights by constructing the Pareto front and
then selecting an appropriate set of weights from it. Such
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approach can be computationally prohibitive, particularly
in real-time decision-making.

We present a utopia-tracking strategy to handle the lim-
itations of weighting-based multiobjective optimization.
The approach automatically determines the point along
the Pareto front of minimum distance to to the so-called
utopia point. The utopia point is, as the name suggests, an
ideal point given by the intersection of the objective val-
ues obtained when each objective is minimized indepen-
dently without taking into account the rest of the conflict-
ing objectives. The proposed approach requires only the
coordinates of the utopia point to determine the weights
corresponding to the minimum distance solution along the
Pareto front to the utopia point. Since the approach does
not require the construction of the Pareto front, it is suit-
able for real-time implementation. In a numerical study,
we demonstrate that the proposed strategy can optimally
resolve conflicts between energy demand and comfort and
can handle steep Pareto fronts efficiently.

MULTIOBJECTIVE OPTIMIZATION

Consider the multiobjective optimization problem:

rrgn [Cbl(x,u)),(bz(xm,),...,CIDM(x,w)] (la)
s.t. g(x,0) <O0. (1b)

Here, the objectives or cost functions are given by ®; :
R0 5 R je M :={1,...,M} where x € R are the
system variables (i.e., states and degrees of freedom) and
o € R is the problem data (i.e., weather and costs). The
constraints are given by the function vector g : R"™*"e —
R™. We define the cost vector as

O, ) = [@1(,), P2(,), ., Pu ()] ()

When the cost functions are conflicting, one cannot be
minimized without increasing the other. This situation
gives rise to the concept of a Pareto solution. A feasible
point x, for the multiobjective problem (1) is said to be
Pareto optimal if and only if no other feasible point x ex-
ists such that ®;(x) < @;(x,), Vi € M and P;(x) < P;(x,)
for at least one index i € M. The family of Pareto solu-
tions forms the so-called Pareto front, which represents a
limiting curve of performance in the cost space. In other
words, no feasible point can lie below the Pareto front.

A traditional approach to resolve conflicting objectives
is to construct the Pareto front and then choosing a suit-



able point along it (Kerrigan et al. 2000). The Pareto front
is typically constructed by following an €-constraint ap-
proach. In the case of two objectives, a domain for the
first objective is assumed [®4 ®Y] and discretized by us-
ing j=1,..,T points denoted by ®7. In order to determine
the corresponding coordinates of the Pareto front for the
second objective, @3, the following optimization problem
is solved:

min  Dp(x,) (3a)
s.t.g(x,0) <0 (3b)
Dy (x,0) > D1, (3c)

for j =1,..,T. Since the objectives are conflicting, CD{
acts as a blocking constraint, and (®],®}) is a Pareto
point. An equivalent approach that works well when ob-
jectives are well-scaled is to select a set of weights w/
by discretizing the domain [0,1] in j = 1,..,T points and
solve the problem

min - w/ - @y (x,®) + (1 —w/) - ®y(x,0) (4a)

X

s.t. g(x,0) <O0. (4b)

The resulting solution @ (x, ®), P, (x,®) is a Pareto solu-
tion.

We highlight that the shape of the Pareto front and its
dependency on the data o are entirely problem-dependent.
This is one of the main reasons why the decision-maker
is typically interested in constructing it. Once the Pareto
front is constructed, the decision-maker or expert selects
a point along the Pareto front by selecting a weight w/.
Many criteria are typically used to select such a point. In-
tuitively, the expert would like to select the weight that is
the closest to the limiting performance of the system. This
point is given by the utopia point. The utopia is a point
given by the solution (x*) with coordinates ®F = ®;(xF)
in the cost space. The coordinates are given by the solu-
tion of the problems

min ®;(x) s.t. g(x,®) <0, )

for i € M. We see that the utopia point is unattainable
because it is not possible to minimize one objective with-
out increasing the others. Consequently, this point lies
below the Pareto front. To get close to the limiting per-
formance, the expert can choose the weight correspond-
ing to the point along the Pareto front that is closest to the
utopia point. Such a point is known as the compromise so-
Iution. We denote this solution as x“ with cost coordinates
@;(x°), i € M. The location of the utopia and compromise
points is illustrated in Figure 1. The choice of the compro-
mise solution as the point of choice is not strictly neces-
sary. Other possibilities include the Kalai-Smorodinsky
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Figure 1: Schematic representation of Pareto front, com-
promise solution, and utopia point.

solution, the egalitarian solution, and the Nash solution
(Gambier 2008).

Unfortunately, selecting weights by constructing the
Pareto front can become extremely computationally ex-
pensive because they require the solution of many opti-
mization problems. This is specially true if the Pareto
front is steep. Steep profiles arise when one objective
strongly increases as another one decreases. This is il-
lustrated in Figure 2. When a steep profile is encountered,
a large number of discretized points are needed to capture
the shape of the front. As expected, a coarse discretization
can lead to suboptimal performance because the weight
selected by the expert can be misplaced. Note also that as
the Pareto front becomes steeper, the penalty paid by mov-
ing away from the compromise solution increases. Con-
sequently, misplacement of weights due to discretization
errors can significantly increase performance.

In the presence of more than two objectives, the com-
plexity of constructing the Pareto front increases expo-
nentially because discretizing the domain requires an ex-
ponentially increasing number of points. Consequently,
constructing the Pareto front is not appropriate for time-
critical environments such as energy management.
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Figure 2: Steep and nonsteep Pareto fronts.



UTOPIA-TRACKING APPROACH

Assume that the utopia cost coordinate vector is given
by ®L = [®; (xF),...,®p(xL;)]. A key observation is that
it is possible to compute the cost coordinates of the com-
promise solution directly by solving the problem

min || ®(x, ) — P, s.t. g(x,®) <O0. (6)
X

Here, | - ||, is the p-norm. The coordinates of the com-
promise solution are given by ®;(x), i € M. We will de-
note the above problem as the utopia-tracking problem. A
schematic representation of the utopia-tracking approach
is presented in Figure 1. Note that, for the single-objective
case, the compromise solution and the utopia point coin-
cide so that @ (x) = ®F.
The p-norm || - ||, with p > 1 has the general form

1

ng P
sl = (Z |silp> : (7
i=1

for vector s € R with elements s;, i = 1,...,n;. We have
that with [s||, = 0 if s = 0 and ||s||, > O otherwise for
all p > 1. Well-known norms are the £, £, and the L.
norms:

Isi =Y Isi| (8a)
i=1
sl = /Y (s (8b)
i=1
I = max{[si],-.., |sa,|}- (8¢)

The choice of norm defines the location of the compro-
mise solution. The difference in position is exacerbated
by the difference in magnitude (scaling) of each of the ob-
jectives. Also, the choice of the norm has important impli-
cations on computational performance. For instance, the
L, norm is smooth (differentiable), whereas £; and L
are not.

To ameliorate the scaling issue, we note that the so-
lution of the individual problems (5) also yields upper
bounds CIDiU7 i € M, given by the costs not minimized.
Consequently, we can use these to scale the cost distances
without affecting its properties. The scaled £, problem
has the form

|| @(x, 0) — DL
min H ToU—a o
s.t. g(x,m) <0. (9b)

The square root in the objective function can introduce
numerical ill-conditioning because the first derivative di-
verges as the argument approaches zero. To deal with this

problem, we can use the formulation

min z (10a)
X,z
s.t.g(x,0) <0 (10b)
®;(x, ) — DL\ °
2 1\ i
Z=X <UL> (10¢)
iear PP~
z2>0, (10d)

which is better-conditioned. Another popular approach is
to minimize the squared form of the norm.

To reformulate the £; variant, we note that ®;(x°,®) >
&L i€ M and for all (x,®). Consequently, we can elim-
inate the absolute value to obtain,

. <I>i(x,c0) 7(I)ZI~‘

min _— 1t (11a)
* iezﬂ\’/[ oY — of
s.t. g(x,0) <O0. (11b)

We can reformulate the L. variant as follows. We
first note that any problem of the form min; ||z|l. with
variable vector z = [z1,...,21] can be reformulated as
mingqy M st |z|<n, i€ M. Iz =Di(x,w) — P,
we can see that z; > 0 because ;(x,®) > @{f. Conse-
quently, as before, the absolute value is not needed. We
thus have

m%n n (12a)
s.t. g(x,®) <0 (12b)
(o) — DL
% <n, ieM. (120
NUMERICAL STUDY

We present a numerical study to illustrate the concepts.
We construct a multiobjective optimal control problem us-
ing an aggregated first-principles model of a building to
demonstrate that the energy demand-comfort Pareto front
can be highly steep, and we determine the location of the
utopia and compromise points. All the codes used for the
calculations can be accessed at http://www.mcs.anl.
gov/~vzavala/publications.html.

SYSTEM MODEL

For our optimization studies, we consider a model de-
scribing the dynamics of a building space conditioned
by an air-handling unit (AHU) system. The system is
sketched in Figure 3. We capture the building conditions
in terms of CO, concentration, humidity, pressure, and
temperature. The model nomenclature is provided in the
appendix.
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Figure 3: Schematic representation of building system.

Material Balances
In the building envelope we have the total mass balance,
dm*(t -

I o w-gw),

where 7 is time. We also have the component balances,

dc;(v)
dt

VZ

= "4 (1)- (1) — (1) G ()

1

+1(T) ot - G5, i € {CO2, HYO}.  (14)

Here, n(7) is the occupancy signal of the space (value of
one if the space is occupied and zero if it is unoccupied).
The total number of occupants under occupied mode is
given by n;,,. Assuming constant density and heat capac-
ity in the mixer, we have

™" (1) +¢" (1) = ¢ (1) +¢" (1)

Ci(1)-g™"*() +C{" (1) - ™" (1) =
C3(1)- ¢ (1) + C" - " (1), i € {CO2, HrO}. (15b)

(15a)

In the AHU, we have the following balances:

e = W
) = g

1

(16a)

—4¢"(1)-¢'(1),  (16b)

i € {CO»,H,0}. Here, m{™ are the mass removal rates
with mgp, () = 0 since this component is not removed
in the AHU. The relationship between the total building
pressure, mass, and temperature can be estimated from
the ideal gas law:

m*(t)-R-T*(1)

We convert the relative humidity of the air at the building
temperature 7%(t) to volumetric concentration Cj; (1)
using the following relationship

Z
Cii,0(7)
t ’
C;,“zo(r)
where the saturation concentration is given by Antoine’s

equation (Reid, Prausnitz, and Poling 1987)

1730.63
T7(t) —39.73°

RH*(1) = 100- (18)

We can convert the volumetric concentration of CO, to
ppmV (typical metric for air quality) using the relation-
ship (epappmv 2011),

Ceo,(V)-R-T*(1)

VZ =1000-
ppm CO, (T) MCOZ 'PZ(T)

(20)

Energy Balances
We consider the following energy balance for the build-
ing envelope (Tashtoush, Molhim, and Al-Rousan 2005):

dT*(1)
m*(T)-cp- ke
E(0)-p-cp T(T) — ™5(2) - p -, - T¥(3)

—U" A" (T7(1) — T (1)) +n(T) - 1or - OF. (21)

In the mixer we have
qout,z (’C) . TZ(’C) + 6Iamb (‘C) . Tamb (’C) —
¢ (0)-T(0) +4¢"(1)-T"(v).  (22)

The amount of condensate in the AHU is proportional to
the latent energy removed/added:

0" (%) = W - mipyo (). (23)

The amount of sensible energy removed/added in the
AHU is given by

Qsens (T) — qi”hZ(T) p- Cp- (Tin’Z (’C) -7 (’C)) (24)

The total energy consumed by the HVAC system is given
by

thac’(,c) — ‘Qlat (T)| + |QS€nS(T)|. (25)
For computational efficiency, we replace the non-

differentiable absolute value operator |- | using dummy
variables as

Q" (1) = Q' (1) + QL' (1) + QY™ (1) + 2™ (1)

(26a)
0'“(1) = Q" (v) — 0'“ (1) (26b)
0""'(v) = Q"(v) - 0" (v), (260)

with Q'f(t), 0" (1), Q%" (1), *"™ (1) > 0.



Degrees of Freedom and Constraints

If we assume a fixed pressure P*(t) = P* we have that
g™ (1) = g°**(1), so that m?(t) is constant and ¢*™ (1) =
q“ (7). In this case, the system has three operational de-
grees of freedom. The first degree of freedom can be ei-
ther ¢ (1) or ¢®*(t) but not both. The other two degrees
of freedom can be the supply air temperature 77%(1), or
Q%" (1) and the supply air humidity, or Q' (1). If we
relax the constant pressure constraint through a soft con-
straint of the form

PL<P(t) <Py, 27)

then the system has four degrees of freedom. Since this
approach gives more flexibility for optimization, it is used
here.

We impose temperature and humidity constraints of the
form

T <T(t) <Tj
RH; < RH(t) < RH}.

(28a)
(28b)

Here, T},RH;,T};,RH{; are nominal lower and upper
bounds.
We consider constraints on air quality of the form

ppmVéo, (T) < ppmVie, - (29)

A lower bound is not necessary because this is given by
the ambient concentration. Dampers represent an impor-
tant dynamic constraint because of their slow dynamics.
In other words, they cannot be moved freely because of
physical limitations or equipment wearing. We model this
limitations by using ramp constraints of the form,

’dqi;’;m < Ag" (30a)
‘dQOZ:(T) < AGL (30b)
‘d‘{:f) <Aqh (300)
‘d"a;:(r) < Aggmb (30d)
WO\ < agiy (30¢)

We impose operational bounds on the AHU delivery tem-
perature and physical bounds on the flow rates:

T ST (D) < T Gl
qinAz < qin,z( 1) < qin,z (31b)
qzurz < g3 (1) < q”’”z (31c)
4 <47 (1) <q (31d)
g < qamb(,t) <qp. (3le)

Moreover, we consider initial conditions for the dynamic
states of the system:

m*(t) = mi,; (322)
T(t) = Ty (32b)
Ci(t) = Gy i € {CO2, HrO}. (320)

Objectives

We consider a trade-off between energy demand and
thermal comfort. The accumulated energy demand over a
time horizon t € [r,7 + T is given by

t+T
@ = /t 0" (1) dx. (33)

We consider a competing comfort objective of the form

t+T

o, :/ (HTZ(‘C) _ Tmm||2 + ||RHZ(‘C) _RHL'()m||2) dt

' (34)

where 7°°" and RH™ define the desired comfort point

for temperature and relative humidity, respectively. An

alternative way of enforcing comfort is using the predicted

mean vote (PMV) and predicted percentage dissatisfied

(PPD) indexes (Olesen and Brager 2004). If a PPD metric

is used to measure comfort, then PPD can be used directly
as the competing objective ®* = ["*" PPDdr.

NUMERICAL RESULTS

To solve the resulting optimal control problems given
by objectives (33)-(34) and constraints (13)-(32), we ap-
plied an implicit Euler discretization scheme to convert
the problem into a nonlinear optimization problem. Time
steps of one hour were used and we used [POPT (Wéchter
and Biegler 2006) to solve the resulting problems and im-
plemented the problems in the AMPL modeling language
(Fourer, Gay, and Kernighan 1993). We used real ambi-
ent temperature and relative humidity data for three days
in the month of March, 2006 in the Chicago area. The
profiles are presented in Figure 4.

We constructed the Pareto front using an €-constrained
approach. In Figure 5, we present a Pareto front of energy
demand against comfort error for an horizon of 3 days.
Here, comfort is measured as the squared error from a de-
sired reference point of 22°C and 50% relative humidity
as in equation (34). This corresponds to a PPD of 5.1%.
We scaled the comfort error to stay within the range (0-
10). As can be seen, the Pareto curve is highly steep at
tight comfort conditions (e.g., a small change in comfort
translates in large amounts of energy). One conclusion
from the shape of the Pareto front is that enforcing com-
fort strictly (by adding large weights) is dangerous since
it can lead to extremely high energy demand. In partic-
ular, from the graph we can see that a comfort error of
around 0.2 (tight tracking of the 22°C,50% point) gives
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Figure 4: Ambient temperature and relative humidity pro-
files used in study.

an energy demand of nearly 5,000 kW, whereas allowing
a small drift of the error (i.e., an average dynamic drift
from 22°C to 23°C and humidity from 50%to 55%) can
bring down the energy demand to levels of 2,500 kWh.
This gives energy savings of 50%.

The impact of allowing temperature drifts from fixed
comfort set-points on energy savings was also analyzed in
(Zavala et al. 2011). The shape of the Pareto front pre-
sented here reinforces the observation that it is necessary
to exploit the flexibility of the comfort zone in order to
save energy. This also indicates that it is inefficient to
tune control loops (PID loops) to track set-points with
minimum error since, as demonstrated by the steepness
of Pareto front, this can lead to large energy inefficien-
cies. This highlights the need for supervisory controllers
(optimization-based energy management) capable of po-
sitioning thermostat and humidity set-points to optimally
trade-off comfort and energy demands.

The proposed utopia-tracking strategy locates the
utopia point and the compromise solution to compute
the optimal trade-off point at the current real-time condi-
tions. Note that the utopia energy demand (unattainable)
is around 2,000 kW h, given by the limit in which comfort
is fully relaxed. This also represents the absolute mini-
mum energy demand needed to keep the building within
the required bounds which are given by other operational
priorities such as moisture control or prevention of equip-
ment freezing. The energy demand of the compromise
solution (optimal) is around 2,500 kWh. This indicates
that the cost of comfort is 500 kWh.

We found that the L., norm is numerically more robust
and handles scaling issues efficiently. The construction of
the Pareto front required a total of 100 optimization prob-
lems to define the steep section of the front. This required

5000

= Pareto Front
O Utopia
O Compromise

4500+ B

40001 1

3500

Energy [kWh]

30001

2500

20002 ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4
Comfort Error [-]

Figure 5: Comfort-energy Pareto front, utopia point, and
compromise solution.

approximately one hour of computation in a standard per-
sonal computer. As can be seen from Figure 5, a hun-
dred points do not provide sufficient resolution near the
compromise point. We found that over 1,000 discretiza-
tion points are needed to keep the resolution nearly con-
stant. This would require ten hours of computation. The
computation of the compromise point using the utopia-
tracking approach required the solution of three optimiza-
tion problems. Two problems were solved to identify the
coordinates of the utopia point, and one was solved to
locate the compromise solution. Less than two minutes
were required for this computation. This indicates that the
approach can be deployed in real-time strategies such as
receding-horizon energy management and predictive con-
trol.

The proposed approach can be applied to any multi-
objective problem arising in energy systems. Additional
objectives include energy cost, which tends to shift de-
mand to exploit price structures instead of minimizing en-
ergy demand. A problem arising in this setting is that en-
ergy demand can, in fact, increase, thus affecting indirect
emissions. Another typical conflict is equipment wearing.
Operators prefer to keep the system set-points fixed in or-
der to minimize damper wearing and potential faults, but
doing so increases energy demands and costs. The pro-
posed framework can be used to resolve this conflict.

CONCLUSIONS AND FUTURE WORK

We present an utopia-tracking multiobjective optimiza-
tion strategy to resolve conflicting objectives in real-time
energy management. We demonstrate that the proposed
approach leads to better performance compared with the
traditional weighting approach. We also show that im-
proper adjustment of weights can lead to large excursions




in performance. The proposed approach automatically lo-
cates the optimal weights and does not require the com-
putation of the Pareto front, making it ideal for real-time
implementation.

As part of future work, it would be interesting to
perform more detailed numerical studies with changing
weather and occupancy conditions during daily, weekly,
and seasonal cycles.
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NOMENCLATURE

Variables
m*(+) total air mass in the building, gr;,
() concentration in building air, gr; /m>
C"() concentration in inlet air, gr;/m>
cr() concentration in mixer, gr;/m>
mi™(-) mass removal rate in AHU, gr;/hr
P(") building pressure, atm
ppmVéo, (+) | CO; concentration, ppmV
g () volumetric inlet flow rate, m? /hr
g4 () volumetric outlet flow rate, m> /hr
q" () volumetric flow rate in mixed, m? /hr
g () volumetric ambient air flow rate, m> /hr
q*() volumetric exhaust air flow rate, m> /hr
Qlat () latent heat removed in AHU, kJ /hr
o%ens () sensible heat removed in AHU, kJ /hr
Qlvae (. electrical energy consumed by HVAC, kJ /hr
T*(+) average temperature in building, K
T3 (. temperature of inlet air, K
(") temperature in mixer, K
RH*(+) relative humidity in building, %

Data
Cé™(.) | concentration in ambient air, gr;/m>
T (.) | temperature of ambient air, K
Nor number of occupants, 500
Gy generation rate per occupant

(CO, =2.4,H,0 = 50) gr;/hr (Aglan 2003)

05 building heat gain per occupant, 432 kJ /hr
uv wall heat-transfer coefficient, 18 kJ/hr - m?-K
& total building volume, 1000 2
AY total wall heat-transfer area, 600 m?
p air heat capacity , 1.0 x 1073 kJ/gryi, - K
plat latent heat of condensation, 2.46 kJ/ 8TH,0
P air density , 1200 g/m?
M air molecular weight, 29 gr/grmu
Mco, CO; molecular weight, 44 gr/grmor
R universal gas constant, 0.082 x 10 3atm - m> / gr,o1 K
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