












This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GANGAMMANAVAR et al.: STOCHASTIC OPTIMIZATION OF SUB-HOURLY ECONOMIC DISPATCH WITH WIND ENERGY 7

TABLE II
COMPARISON OF DISPATCH RESOLUTION (10% WIND PENETRATION)

Fig. 3. Adjustments with sub-hourly coupling model in Illinois system.

verification CI which allows us to conclude that the solutions
obtained are acceptable. Moreover, the verification column also
shows that the estimated mean for 2-SD solutions are uniformly
lower than the ones for ESF.
Fig. 3 shows the adjustments of slow-response conventional

generation in the sub-hourly coupling models. The recourse
computed using a large set of scenarios allows 2-SD to predict
solutions which require significantly lower adjustments at
sub-hourly intervals when compared to the deterministic ESF
approach, which is currently being used by operators. This is
indicated by the fact that the adjustment intervals for 2-SD are
completely enclosed within those for ESF (see Fig. 3).
Shifting our attention now to solution times for RTS96, note

that as the number of scenarios increase for ESF, it loses its com-
putational edge to 2-SD. This is, in fact, highlighted in the more
realistic instance for the state of Illinois where ESF takes almost
50 min to manage 5 scenarios. On the other hand, 2-SD offers
significant improvements in solution quality and computational
times. This makes 2-SD an attractive method for solving large
scale stochastic economic dispatch problems. Incidentally, the
reader may find it interesting to note that if one were to use an

ESF formulation to solve the Illinois instance using hourly cou-
pling model reported in Table I, that linear program would have
7.2 million rows and 8.3 million columns.
As one can surmise, the predicted values obtained by 2-SD

can also be significantly different from the verification CI. For
such cases, we would expect to run the 2-SD algorithm with
tighter stopping tolerance, so that the algorithm would use a
larger number of samples, leading to improved gap estimates.
However, this was not necessary for the instances encountered
in this study.

B. Sensitivity to Dispatch Interval
To account for hourly coupling constraints and varying reso-

lutions ( and 60min) in hourly couplingmodel, a
common min is chosen for comparison in these exper-
iments. In these instances slow-response generation and intertie
decisions are held constant for a duration of min. The
sub-hourly coupling model uses of 60 min, over which only
intertie decisions are held constant, while the slow-response
generation decisions can be updated at and 60
min.
The two-stage stochastic programming instances at varying

dispatch intervals are solved using 2-SD. The solutions obtained
from these instances are verified using the same set of wind
scenarios. The prediction and verification results for all the in-
stances are summarized in Table II. These results indicate that
finer resolution dispatch instances lead to lower costs for both
hourly and sub-hourly coupling models. The coarser resolution
models underestimate the realistic costs as indicated by the pre-
dicted values in Table II. This is because, optimization in these
instances is carried out with mean ensembles.
Recall that the slow-response conventional generation levels

are fixed for min in the hourly coupling model, while
the variable generation data is available at varying intervals
( min). As the interval is decreased, the fine
timescale fluctuations in variable generation are clearly evident
during optimization and hence, in this model the first stage re-
acts cautiously by using more slow-response conventional gen-
eration and intertie resources as indicated in Table II. The need
to avoid infeasibilities due to lack of transmission capacity also
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TABLE III
WIND PENETRATION RESULTS WITH HOURLY COUPLING MODEL (10-MIN RESOLUTION, 70-MIN HORIZON)

Fig. 4. Reserve utilization in Illinois System with Hourly Coupling Model.

contributes to this increase. In the sub-hourly coupling model,
although the slow-response conventional generation decisions
can be revised every in an adaptive manner, they are limited
by their ramping capability. Hence, the first stage uses fine grain
data and increases the first stage resources.
Table II also lists the p-value, computed from the verification

data, associated with the null hypothesis: there is no difference
between the 10-min dispatch solution and solution from lower
resolution models. A p-value of less than 0.05, as seen for ex-
ample in all 60-min dispatch instances, allows us to reject the
null hypothesis at 95% significance level, and we can conclude
that their solutions result in statistically different verification re-
sults. On the other hand, the null hypothesis cannot be rejected
for 20-min dispatch instances, at 95% significance level.
Fig. 4 shows fast-response reserve utilization in Illinois

system when hourly and sub-hourly (10-min interval) res-
olution is used with hourly coupling model. The positive
and negative values indicate ramp up and down utilization
respectively. Recall that this model uses committed reserve
levels as input, this is indicated by the outermost
whiskers. The horizontal red lines with notches represent the
median. The figure indicates that the reserve requirements in-
crease with an increase in wind penetration levels. Further, the
sub-hourly resolution models reduce reserve utilization for all
penetration levels when compared to hourly resolution models.

C. Wind Penetration Study
Thus far our computational experiments have demonstrated

that both sample studies and coarse grain optimization have a
potential to be misleading in their predictions (Table I, Table II).

TABLE IV
ILLINOIS SYSTEM RESULTS WITH ADDED TRANSMISSION CAPACITY

Such observations have also been made in simulations studies
conducted by CAISO ([9], see I). Since 2-SD is a simulation-
based optimization algorithm, we suspect that it should also be
able to predict circumstances that cause congestion even when
the dispatch is optimized. In this section we undertake a study
to assess the performance of 2-SD at different wind penetration
levels on both RTS96 and Illinois networks.
Energy penetration for this study is measured as the ratio

of the amount of energy produced from the wind generation
to the total energy produced. The results for 10%, 20%, and
30% wind integration for both the test networks are provided
in Table III. These experiments were conducted on the hourly
coupling model with min, min, and
min.
As expected, thermal generation is reduced as the availability

of wind is increased. For the RTS96 system congestion was
not encountered during 2-SD runs, and hence the net opera-
tional cost decreases when the penetration levels are increased
(Table III). On the other hand, the initial experiments with the
Illinois system identifies a small area of the network that needs
congestion relief. In this area, increased penetration led to gen-
eration curtailment which in turn increased the overall operating
cost of the system (Table III). Such identification of congestion
is due to the combination of optimization and simulation within
2-SD.
Prompted by the specific areas of congestion we introduce

additional capacity on a few links which alleviates such con-
gestion. Table IV compares the verification results of the orig-
inal Illinois system with the modified network. With additional
transmission capacity the results indicate that the operational
cost decreases with increased penetration. The reserve require-
ments also increase with the penetration levels due to increased
volatility as shown in Fig. 4.
The 2-SD framework does not rely on a-priori sampling or

knowledge of explicitly provided probability distribution. The
algorithm learns the stochastic process in an online manner, and
as a result, the number of samples necessary during the runs
might vary (see Tables II and III). Table III also highlights the
computational performance of 2-SD in instances with higher
variability resulting from increased wind penetration. Moreover
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for congested networks, like the Illinois system at 30% pene-
tration, a deterministic approach will choose a solution which
can ensure feasibility only with respect to the sample(s) used to
build the model. As a result, the system is much more prone to
higher variability of reserves. On the other hand, 2-SD chooses
first-stage solution which ensures feasibility across all the sam-
ples encountered during optimization. As before, the predicted
value falls within the verification confidence interval, and hence
2-SD provides good quality solutions even in the presence of
high variability.

IV. CONCLUSION

In this paper, we presented a stochastic economic dispatch
framework which allows control of slow-response energy
resources and intertie decisions at a coarse timescale, and
renewable generation along with other dispatch related deci-
sions at a fine timescale. To the best of our knowledge, this
is the first study to incorporate sub-hourly economic dispatch
within a stochastic optimization model. We presented two
dispatch models which represent alternate operating practices
used by power system operators. The results comparing these
models at different resolutions illustrated the improvements
that can be achieved by sub-hourly dispatch. The improvement
in terms of the overall operational cost was due to effective
utilization of sub-hourly information in deciding the first stage
slow-response generation and intertie levels. The results at
various wind integration levels showed reduction in operating
reserve usage under sub-hourly dispatch. We also presented
a stochastic programming approach, using 2-SD algorithm,
to solve these large problems. The results demonstrated the
scalability of 2-SD and showed that, when compared with
extensive scenario formulation, 2-SD provided verifiably better
solutions in far less time. Finally, the 2-SD algorithm was
hooked with an external simulator which provided outputs for
wind generation. Application of 2-SD algorithm over a rolling
horizon, capturing economic dispatch over multiple hours, is
currently being studied, and will be reported in the future. We
will also investigate the role of storage devices in mitigating
the challenges of renewable integration as part of our future
research.

APPENDIX
ECONOMIC DISPATCH FORMULATION

A. Notation

We will use to denote the first stage decision epoch.
With denoting the model horizon and the sub-hourly in-
terval, is the number of sub-hourly decision epochs.

will denote these fine timescale decision
epochs. The set of buses, links, demand and intertie nodes are
denoted as , , , and , respectively. The set constitutes
the slow-response conventional generators, while the set of
wind generators and fast-response reserves are denoted as
and , respectively. The subscript represents a subset of the
respective set at bus- .

The first stage variable consists of intertie decisions
and slow response conventional generation levels
. The corresponding production costs are denoted as and
, respectively.

Second stage variable includes the line-
utilization and bus- angle . Additional resources are
available through committed fast-response reserves which are
used to match energy imbalance resulting from stochastic real-
izations. These resources are limited by their availability, which
is proportional to wind penetration, and is assumed to be known
from prior unit/reserve commitment. These resources can pro-
vide both ramp-up and ramp-down capabilities and we will use

to denote utilization of these resources. Beyond this limit,
the load can be curtailed by and the value of lost load is set
at (set to $2000 in the computational study). Due
to network constraints it is possible for generation at any par-
ticular node to be left unused. This generation can be ramped
down only by a certain amount dictated by the physical ramping
constraints. Generation beyond this limit is curtailed, which is
denoted as , and penalized by including a shedding penalty

at generation side . Finally, we treat wind generation
as a must-take resource [33, Section III], provided there are suf-
ficient reserves and no transmission issues in the system. To
ensure this we impose a penalty on wind curtailment .
These are also included as second stage decisions. For our com-
putational study we have set these generation shedding penalty
to $500 (a value greater than the highest production cost). Alter-
nately, market based settlement costs/opportunity costs can be
used for these curtailment penalties.
The hourly coupling model also includes the intertie deci-

sions and slow-response generation levels for next hour which
are denoted as and , respectively. The in-
elastic load is denoted by for the current hour and for the
next hour. The sub-hourly coupling model, on the other hand,
has conventional generation revisions and .

B. Objective

For the hourly coupling model, the total cost comprises of
the current intertie and conventional generation cost, and the
expected value of recourse function. This recourse function in-
cludes the cost of generation for next hour and the penalty cost
associated with wind, thermal and load curtailment:

(8)

For sub-hourly coupling model, the intertie and generation for
next hour are not considered in the above function. However,
the conventional generation revisions are included at sub-
hourly time intervals. For , the function is given by

(9)
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When , there are no sub-hourly revisions, and hence the
term is not included in (9). The objective is to minimize
this cost subject to the constraints presented as follows.

C. Hourly Constraints
These constraints are associated with slow-response genera-

tors.
a) Generation capacity:

(10)
(11)

and are the minimum and maximum genera-
tion capacity of generator units indexed by .

b) Ramping constraints:

(12)
(13)

and represent the down and up-ramping
limits of generator units. Recall that the initial dispatch
levels are known inputs to our models.

Constraints (10) and (12) appear as first stage constraints in (1a)
for both the hourly and sub-hourly coupling models, while con-
straints (11) and (13) are bundled into second stage constraints
(1b) only for the hourly coupling model. Note that these hourly
constraints are not considered for aggregation.

D. Sub-Hourly Constraints
The sub-hourly constraints are functions of both first and

second stage variables. There will be one set of constraints,
, associated with each realization of the

random variable .
a) Power flow equation: If belongs to current hour

(14)

The power flow equations ensure that the supply meets
the demand at every bus in the network. The next hour
power flow equations for the hourly coupling model are
obtained by replacing with and with .
Since sub-hourly coupling model allows for revision of
conventional generation decisions at sub-hourly intervals,
we will use in the place of the static in the above
power flow equation.

b) Line flow equation:

(15)

Here 's are the bus voltages and is line reactance.
The real power transmitted on any line and power loss
on it are non-linear functions of the difference between
the angles at the buses connected by the line. Second-
order approximations are used to linearize these functions

which make it suitable to be used with standard linear op-
timization methods. The power flow losses in the network
are ignored in this formulation and only the line power
flows are considered. [34] provides the details on this lin-
earization of network constraints.

c) Reserve limits: Sub-hourly energy imbalance can be ad-
dressed using fast-response reserves which are limited by
their availability:

(16)

The limits and are available through reserve
commitments, and are inputs to our models.

d) Sub-hourly revisions: The sub-hourly coupling model al-
lows for sub-hourly revision of conventional generation
which are limited by ramp rates of these generators. For

(17)

The ramping limits are dependent on , and hence we
denote them as functions of .

e) Bounds: The bounds on the second stage variables are
enforced due to the physical constraints on the network.

set the limits on the line capacities and
are the limits on the bus angles. The curtail-

ment variables are limited by the amount of generation
and load. For all

(18a)
(18b)
(18c)
(18d)
(18e)

For the hourly coupling model, the upper bound in (18c)
is replaced by for all .
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