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Change Detection in the Cox Proportional
Hazards Models from Different Reliability
Data
Zhiguo Li,a∗† Shiyu Zhou,b Crispian Sievenpiperc and Suresh Choubeyc

The Proportional Hazards (PH) model is an important type of failure time regression model which relates the
occurrence probability of critical failures to influential factors. However, little research work has been done on
detecting changes in the PH models fitted based on different sets of reliability data. This paper develops the
methods for change detection in the Cox PH models, also known as Semiparametric PH model, for reliability
prediction and/or assessment of the time-to-failure data collected from different subjects. The effectiveness of
the developed methods is illustrated through numerical studies and real-world data analysis. The developed
technique possesses wide applicability to the systems and processes where the Cox PH model fits the reliability
data well. Copyright © 2010 John Wiley & Sons, Ltd.
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1. Introduction

R
eliability modeling, which is the process to build a descriptive or predictive model for the reliability of a component,
subsystem, or a system, has always been a significant part of reliability assessment and prediction. Among the failure-
time regression models that relate the failure times of a component or a system to influential factors (covariates), such

as customer usage patterns and environmental stresses, Proportional Hazards (PH) model1 is an important survival model
widely used in reliability engineering2--5. According to the form of the baseline hazard function, the PH model can be clas-
sified as the Parametric PH model or the Semiparametric (Cox) PH model. The former assumes a parametric distribution,
such as the Weibull distribution, for the baseline hazard function6--8, whereas the latter has an unspecified baseline hazard
function9--11. Both types of PH models are widely used in modeling different types of reliability data. Based on PH models, some
researchers12--14 have developed optimal Condition-Based Maintenance (CBM) policies, where the maintenance decision is deter-
mined based on the information or signals collected through condition monitoring of the equipment or estimates of the machine
reliability.

The PH model lays a mathematical foundation for predicting the failure occurrence, testing the prediction accuracy, and
developing optimal maintenance policy. However, many interesting technical challenges exist in applying this model to the
reliability data, which could be collected from different machines/ locations and normally evolve over time due to the underlying
degradation mechanism. Thus, detection of changes in the PH models from different reliability data sets is critical for the practical
application of this model.

One of the challenges is that the PH model is often estimated based on historical data. To utilize such a model for failure
prediction and other applications, however, we should make sure that this model is up-to-date and reflects the current system
behavior. After all, system characteristics, such as the failure occurrence rate and the influence of covariates, are subject to
changes. As a motivating example, a reliability engineer who designs maintenance and service policies based on a PH model for
failure events needs to make sure that the adopted PH model, which is often fitted using the historical reliability data, should
fit well with the currently observed reliability data. Only if the adopted model differs significantly from the present data should
both the PH model and the associated service policies be updated.

Another example that motivates the detection of changes in PH model is the remote service of machine in the field. A customer
service engineer may want to analyze the time-to-failure data collected from different machines in the field. Only if some machines
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show significant differences in the failure behavior from others after the effects of the usage patterns are adjusted, a customer
visit will be scheduled to find out the causes of the change, which normally is costly. In addition, the machines with similar
behaviors can be grouped together and the same service policies can be implemented.

The problem of testing if the present data fits well with a PH model fitted from the historical data can be formulated
as an off-line change detection problem. The general change detection problem has been an active research topic in many
applications, such as quality control, segmentation of signals, and CBM of industrial equipment15. In change detection, different
distributions or mathematical/statistical models are fitted to the data collected from a static or dynamic system and then tools
or algorithms are proposed to detect the changes in the parameters of the distribution or model. For instance, in the field of
statistics and quality control, some methods are developed to handle change-point problems or detect homogeneous regions
of a random field16. These include Shewhart Control Charts, the CUSUM method for sequential change-point detection17--19. In
more complex applications, some change detection algorithms are developed based on different mathematical/statistical models,
such as regression models, ARMA (ARIMA) models in time series analysis, state–space models for dynamic systems, and controlled
semi-Markov processes20. In Computer Science, some authors developed a framework for quantifying the differences between two
data sets for change detection purposes under several data mining models and algorithms, such as dt-models, list-models, and
cluster-models21, 22. However, to the best of our knowledge, there is little work on change detection in the time-to-failure data
under Semiparametric (Cox) PH models. In this paper, we shall develop the methods for off-line change detection in Cox PH models
fitted from different sets of reliability data. Similar to Reference22, the term deviation will be used for the difference between two
Cox PH models in this paper.

The remainder of the paper is organized as follows. In Section 2, the problem formulation and the statistical procedure to
measure the differences between the Cox PH models are presented. The details of each step of the proposed procedure can be
found in Section 3, where we also illustrate the effectiveness of the developed procedure through numerical case studies and
real-world data analysis. Finally, we conclude the paper in Section 4.

2. Measuring deviation in the Cox PH models for different sets of reliability data

2.1. Brief review of the Cox PH model

Denote T as the time-to-failure. Let h[t|Z(t)] be the hazard (rate) function at time t with covariate vector Z(t), the basic Cox PH
model23 is as follows:

h[t|Z(t)]=h0(t) exp[bTZ(t)]=h0(t) exp

[
p∑

k=1
�kZk(t)

]
, (1)

where h0(t) is the baseline hazard (rate) function, and the PH model means that the hazard rate of a subject is proportional to
its baseline hazard rate h0(t), which is the basic assumption of the Cox PH model. In the model, b is the coefficient vector and
Z(t)= [Z1(t), Z2(t),. . . , Zp(t)]T is the covariate vector. Zi(t), i=1, 2,. . .p, is a time-dependent covariate if its value varies with time in a
part life. If the value of Zi(t) does not change over time, we denote it as Zi .

The coefficient vector b is estimated by maximizing the partial likelihood. Based on the partial maximum likelihood estimator
b̂, the Breslow estimator of the baseline cumulative hazard function, Ĥ0(t, b̂) can be estimated directly from the data and thus the
estimated baseline survival function Ŝ0(t, b̂)=exp[−Ĥ0(t, b̂)] can be obtained. From Ĥ0(t, b̂), we can obtain a non-smooth or smooth
estimate of the baseline hazard h0(t) through several methods. These methods often give rise to different estimate results of
h0(t). Obviously, a Cox PH model is determined by the baseline function h0(t) and the covariate coefficients b. By statistically
comparing the fitted baseline function and the covariate coefficients across different Cox PH models, the model deviations can be
determined. In this paper, a systematic methodology is developed to compare the covariate coefficients (assuming the covariates
are the same) for different Cox PH models. Since the survival function (or equivalently the cumulative hazard function) is of main
interest to the reliability engineers and also easy to be interpreted, and the estimate of the baseline survival (cumulative hazard)
function is more straightforward compared with that of the baseline hazard rate function, we also develop a method for the
comparison of S0(t) or equivalently, H0(t) in this study.

In biomedical applications, the comparison of the survival functions or cumulative hazard functions of two treatments is a very
common problem solved through statistical tests based on comparing the survival curves or the cumulative hazard functions
over the entire observational period. In the case that no other covariates have impact on the survival, the log-rank test24 is
widely used for the abovementioned aim, whereas the testing of treatment effects with other covariates is performed in the
context of regression models, typically the Cox PH model, which can adjust the effects of the other covariates. As an example, in
Reference25 is proposed the technique for building a simultaneous confidence band, i.e. a collection of confidence intervals for all
times in a specified time interval [t1, t2] with the simultaneous coverage probability 1−�, where � is the confidence level, under
the stratified Cox PH model23. The selection of time points t1 and t2 will affect the obtained simultaneous confidence band.
Although the simultaneous confidence band is used to assess the overall probability that the two baseline survival functions
differ for a given time interval [t1, t2], it cannot be used to show at what fixed times these two curves are statistically different
since it only gives an overall probability.

In this paper, we propose a procedure for constructing the pointwise confidence region for the difference between the two
cumulative hazard curves to answer the question ‘at what times are these two baseline survival functions different?’, which is an
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Figure 1. The procedure for measuring deviations between the Cox models

important question in industrial applications such as reliability analysis. For example, regardless of whether the overall survival
functions are statistically different over the entire observational time period, reliability engineers may be interested in finding
out whether one group of machines has higher early survival or higher long-term survival compared to the other group. The
answer will help to implement different service and maintenance policies on different machines, and this information can also
be fed back to the design engineers. Compared to the simultaneous confidence band, the pointwise confidence region is built
by grouping together all fixed time points at which the two baseline functions differ to answer the abovementioned question.
The details are discussed in Sections 2.4 and 2.5.

2.2. Steps for measuring deviations between Cox PH models

A diagram of the complete procedure for measuring the deviation in the Cox model is illustrated in Figure 1.
The detailed steps are as follows:

Step 1: Preprocess two time-to-failure data sets D1 and D2;
Step 2: Construct two Cox models M1 and M2 for D1 and D2, respectively. For simplicity, we use M1(b1, S01(t)) and M2(b2, S02(t))
to denote the models, since the Cox model consists of two parts: the exponential part exp[bTZ(t))] and the baseline survival
function S0(t) adjusted for the effects of covariates. Proceed to step 3.
In some cases, the data analyst may assume that the regression coefficients b1 and b2 are the same based on the engineering
knowledge of the system/process. That is, there is no justification for the changes in the effects of the covariates. In this case,
a stratified Cox model will be fitted to the combined data with D1 and D2 as the strata. In this case, go to step 4B following
the dashed line in Figure 1.
Step 3: Check whether the coefficient vectors b1 and b2 are the same or not in the first place. As stated in Section 2.1, the
coefficient vector b can be estimated by maximizing the partial likelihood, which does not depend on the baseline part. Thus,
the effects of covariates can be compared without knowing S0(t). If b1 �=b2, go to step 4A; otherwise go to step 4B.
Step 4A: (When b1 �=b2): Compare the baseline survival curves S01(t0) and S02(t0) and construct a (1−�)×100% pointwise
confidence region for the equality of two baseline survival curves, i.e. S01(t0)=S02(t0), at each fixed time point t0. Thus the
time intervals when the two curves are different can be identified. Note that this step can be skipped since it can be concluded
that the two Cox PH models are different simply based on the fact of b1 �=b2.
Step 4B: (When b1 =b2): Fit a stratified Cox model23 to the combined data consisting of D1 and D2 as

h∗
j [t|Z(t)]=h∗

0j(t) exp[bTZ(t)], j =1, 2 (2)

where the regression coefficients are assumed to be the same in the two data sets (strata), whereas the baseline parts are not
related to each other and thus can be different. Some details of the stratified Cox model are discussed in Section 2.5.
Step 4C: Construct a (1−�)×100% pointwise confidence region for the equality of two baseline survival curves S∗

01(t0)=S∗
02(t0)

at each fixed time point t0. Remark: if the overall probability of the two survival functions over the entire observational period
is of interest, we need to build a simultaneous confidence band for the difference of the two baseline survival curves. Refer
to Reference25 for details.

Note that, in Steps 4A and 4C, the range of the fixed time t0 is [0,�], where � is defined as the smaller value of the largest
failure times in D1 and D2, respectively, because the nonparametric estimates of survival function S(t) and cumulative hazard
function H(t) are not defined after �23 and thus we cannot compare the two baseline functions when t>�.
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2.3. Measuring the deviation in the effects of covariates

In this subsection, our approach for measuring the differences between the effects of covariates is presented. To measure the
differences in the coefficient vector b, a global hypothesis can be formulated as H0 :b1 =b2 vs H1 :b1 �=b2. Here the term ‘global’
is used to differentiate this test with the local test when only a subset of b is of interest. Now we have the following lemma and
the proof can be found in Appendix A.

Lemma 1
Let M1, M2 be two Cox PH models induced by the two reliability data sets D1, D2 and b1, b2 are the coefficient vectors of M1,
M2, respectively. Under the null hypothesis H0 :b1 =b2, we have the statistic

X2 = (b̂1 − b̂2)T(R̂1 +R̂2)−1(b̂1 − b̂2), (3)

which has a chi-squared distribution with p degrees of freedom and p is the length of b1 or b2. Here b̂1 and b̂2 are the partial

maximum likelihood estimators of b1 and b2, respectively; R̂1 and R̂2 are the estimators of variance-covariance matrices for b̂1
and b̂2, respectively. The proof of this lemma can be found in Appendix A.

The null hypothesis will be rejected when the value of statistic X2 exceeds the �% upper percentile of the chi-squared
distribution, where � is a given significance level. Thus statistic X2 proposed in Lemma 1 can be used to detect the differences
in b.

One may also be interested in the property of this statistic, such as its power to reject a false null hypothesis. Given a
significance level �, the power of hypothesis testing can be estimated as

Estimated power=Pr(X2(�̂)>�2
p,1−�), (4)

where X2(�̂) is a non-central �2 random variable with p degrees of freedom and the estimated non-centrality parameter �̂=
(b1 −b2)T(S1 +S2)−1(b1 −b2), where bj and Sj , j=1,2, are the estimates of the coefficient vector and variance–covariance matrix
from the data.

If a subset of the coefficient vector ba ⊂b is of interest, that is, we try to test if H0 :b1a =b2a vs H1 :b1a �=b2a (local test), the
statistic in Equation (3) can be modified as follows:

X2
a = (b̂1a − b̂2a)T(R̂1,aa +R̂2,aa)−1(b̂1a − b̂2a), (5)

where b̂1a and b̂2a are the same subsets of b̂1 and b̂2, R̂1,aa and R̂2,aa are their q×q submatrices of R̂1 and R̂2, where q is

the length of b̂1a or b̂2a. The statistic in Equation (5) follows a large sample chi-squared distribution with q degrees of freedom
under H0. Similar to Equation (4), the power can be estimated. In the following subsection, we will develop the procedure for
measuring the differences between the baseline parts of the Cox model.

2.4. Measuring the differences in the baseline survival curves when b1 �=b2

Note that this step can be skipped if we are only interested in concluding that the two Cox PH models are different based on
the fact of b1 �=b2. The following procedure is designed to further understand if and at what times the baseline survival functions
of the two models differ from each other.

When there are no covariates in the data set, the rank tests such as the log-rank test, Mann–Whitney–Wilcoxon, and Kruskal–
Wallis test can be used to compare two survival curves from D1 and D2 over the entire time period23. In case the covariates
exist, we need to use the regression technique, such as the Cox model, to adjust the effects of the covariates on the occurrence
of failure events so that we can understand the changes in the ‘real’ performance of the machines.

In this subsection, we will compare the baseline survival functions of two models M1(b1, S01(t)) and M2(b2, S02(t)) induced
by D1 and D2. For this, we will consider the null hypothesis H0 : S01(t0)=S02(t0) against the alternative H1 : S01(t0) �=S02(t0) for
each fixed time point t0 in the range [0,�], where � is defined as the smaller value of the largest failure times in D1 and D2.
The confidence region is built based on this testing by unifying all fixed times at which this test does NOT reject the hypothesis
of no difference between two baseline survival curves. Note that this null hypothesis is not a test for equality of the two survival
curves over the entire observational time period.

This set of hypotheses is equivalent to H0 : H01(t0)=H02(t0) against the alternative H1 : H01(t0) �=H02(t0) considering the fact that
S0j(t)=exp[−H0j(t)], j=1, 2. However, only the test on H01 and H02 will be studied in this paper because the estimated baseline

cumulative hazard function tends to converge faster than the estimated baseline survival function26.
Let Nj(t), j=1, 2 denote the counting process which counts the number of failure events in the jth data set at or prior to

time t. And Yj(t), j=1, 2 is the number of failure times that are NOT less than time t in the jth data set.

The Breslow’s estimator24 for the baseline cumulative hazard rate given the Cox models is

Ĥ0j(t)=
∫ t

0

dNj(u)

S(0)
j (b̂j , u)

, j =1, 2, (6)6
8

0
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where S(0)
j (b̂j , u)=∑nj

i=1 Yij(u)exp(b̂jZij(u)), nj is the number of failures in the jth data set, and Yij(u) is the indicator for the ith failure

time in the data set j being not less than time u. Thus we have the statistic for H0 : H01(t0)=H02(t0) against H1 : H01(t0) �=H02(t0) as

�Ĥ0(t)= Ĥ01(t)−Ĥ02(t). (7)

The test of H0 : H01(t0)=H02(t0) cannot be rejected at an � level if we have |�Ĥ0(t) /
√

var[�Ĥ0(t0)]|�z�/2, where z�/2 is the � / 2
upper quantile of the standard normal distribution. The variance of this statistic can be derived according to Corollary VII.2.4 in
24 as follows:

var[�Ĥ0(t0)]=
2∑

j=1

⎧⎨
⎩

∫ t0

0

dNj(u)

[S(0)
j (b̂j , u)]2

+WT
j (b̂j , t0)�̂jWj(b̂j , t0)

⎫⎬
⎭, (8)

where WT
j (b̂j , t0)=∫ t0

0 Z̃j(b̂j , u) dĤ0j(u), j=1, 2,

Z̃j(b̂j , u)=
S(1)

j (b̂j , u)

S(0)
j (b̂j , u)

,

and

S(1)
j (b̂j , u)=

nj∑
i=1

Yij(u)Zij exp(b̂jZij(u)).

Finally, a (1−�)×100% pointwise confidence region for the times when S01(t)=S02(t) can be derived based on the statistic as

{t0 :−z�/2��Ĥ0(t0) /
√

var[�Ĥ0(t0)]�z�/2}. Namely, the set of times when the two baseline curves are the same contains all the
time points in the abovementioned confidence region.

2.5. Measuring the differences between the baseline survival curves when b1 =b2

Now let us consider the case that b1 and b2 are the same. The conclusion b1 =b2 could come from the hypothesis testing stated
in Section 2.3 or the assumption of no change in the effects of covariates based on the engineering knowledge of the system.

If b1 =b2, then a stratified Cox model can be fitted to the combined data set consisting of D1 and D2, D={D1, D2}, as
h∗

j [t|Z(t)]=h∗
0j(t) exp[bTZ(t)], j=1, 2. In biomedical analysis, the stratified Cox model is the most widely used conditional model

for modeling clustered survival data from multiple study centers, because this model possesses ‘ease of computation and the
applicability across a wide variety of settings’27. In our study, if we view different machines or time periods as study centers in
clinical trials, then the stratified Cox model is an appealing tool to model the time-to-failure data from different machines or time
periods.

As stated in Section 2.1, for the stratified Cox model, the regression coefficients are assumed to be the same in the two data
sets whereas the baseline parts can be different. Following the similar logic as in Section 2.4, we can construct a (1−�)×100%
confidence region for the equality of two baseline survival curves S∗

01(t0)=S∗
02(t0) at each fixed time point t0.

The method is similar to that in Section 2.4. We try to test H0 : H∗
01(t0)=H∗

02(t0) against H1 : H∗
01(t0) �=H∗

02(t0) with the statistic

in Equation (7). However, the differences are: (1) all b̂js in the formulas (6)–(8) should be replaced by b̂ since now we have the
same coefficient vector for two data sets and (2) the variance of the statistic for H0 : H∗

01(t0)=H∗
02(t0) against H1 : H∗

01(t0) �=H∗
02(t0)

is different from Equation (8) since here estimating both baseline cumulative hazards depends on b̂ and thus the estimates are
not independent. To make it clear, we listed all formulae in this case as follows24.

The statistic for H0 : H∗
01(t0)=H∗

02(t0) against H1 : H∗
01(t0) �=H∗

02(t0) is

�Ĥ∗
0(t0)= Ĥ∗

01(t0)−Ĥ∗
02(t0), (9)

which is based on the Breslow’s estimator for the baseline cumulative hazard rate

Ĥ∗
0j(t)=

∫ t

0

dNj(u)

S(0)
j (b̂, u)

, j =1, 2, (10)

where S(0)
j (b̂, u)=∑nj

i=1 Yij(u) exp(b̂Zij(u)). The variance of this statistic is,

var[�Ĥ0(t0)]=
2∑

j=1

∫ t0

0

dNj(u)

[S(0)
j (b̂, u)]2

+WT(b̂, t0)R̂bW(b̂, t0), (11)
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where WT(b̂, t0)=∫ t0
0 Z̃1(b̂, u) dĤ∗

01(u)−∫ t0
0 Z̃2(b̂, u) dĤ∗

02(u),

Z̃j(b̂, u)=
S(1)

j (b̂, u)

S(0)
j (b̂, u)

,

and

S(1)
j (b̂, u)=

nj∑
i=1

Yij(u)Zij exp(b̂Zij(u)).

Similarly, a (1−�)×100% pointwise confidence region for the times when S01(t)=S02(t) can be obtained as {t0 :−z�/2��Ĥ∗
0(t0) /√

var[�Ĥ∗
0(t0)]�z�/2}.

3. Case studies

To show the effectiveness of the proposed methods, we carried out the following numerical case studies (Sections 3.1 and 3.2)
and real-world data analysis (Section 3.3). In the studies, without loss of generality, we shall use the event sequence data as an
example and follow the procedure presented in Reference11 to build the Cox PH model for the extracted time-to-failure data.
The time-dependent covariates incorporated in the Cox PH model for the event sequence are different event types, which are
represented by step functions—the covariate value is zero before the occurrence time and one after that. Readers can refer to
Reference11 for details about the Cox PH model fitting from event sequence data.

In numerical case studies, to generate the simulated data, the Weibull distribution28, widely used in reliability analysis, is used
as the baseline part of the Cox model. When only the scale parameter of the Weibull distribution is changed, we can have a
hazard function proportional to the old hazard function—the PH change. If the shape parameter is changed, the resulted hazard
will not be proportional to the original one—the non-PH change. Both cases can be addressed with the proposed technique.

In the numerical studies, two event types (covariates) A and B and their interactions are assumed to be significant in the Cox
PH model. For a single hypothetical failure event sequence, we generated N=1000 time intervals. Event type A or B may occur
at most once in each time interval. Some details of the simulation will now be discussed. The distributions used to generate the
simulated data and the corresponding parameters are summarized in Table I.

1. For each time interval, the occurrences of events A and B are assumed to be independent of one another. We also assumed
that A and B occur within 50% and 40% of all the time intervals respectively, that is the occurrence of events A and B in
each time interval independently follow a Bernoulli distribution with p=0.5 and 0.4, respectively.

2. For those time intervals during which events A and/or B occur, we generated the occurrence times of the corresponding
event according to a specified distribution. Without loss of generality, for A, the assumed distribution of the occurrence
time was log normal with �A =2, �A =1; for B, it was an exponential distribution with �B =5. In total, N=1000 sets of
time-dependent covariates (events A and B) are generated.

3. The shape parameter and scale parameter of the baseline Weibull distribution are denoted as a and b, respectively, and its
hazard function is h0(t)=a−bbtb−1. Three sets of Weibull parameters are used in the studies and they are listed in the last
three rows of Table I.

4. Assuming that the coefficient vector b in the Cox PH model is known, we can follow the method in Reference29 to generate
the failure times (the length of time intervals). In the study, we assume that the time-dependent covariates of events A and
B as well as their interactions are significant.

5. The censoring percentage is around 5%, which means about 5% of the generated failure times are censored. The censoring
distribution is the uniform distribution U[0, h], where h is the upper limit and its value should be set to obtain a 5% censoring
percentage.

Table I. The distributions and corresponding parameters used in the studies

Term Description Distribution Parameter

Event A Occurs or not Bernoulli pA =0.5
Occurrence time Log-normal �A =2 �A =1

Event B Occurs or not Bernoulli pB =0.4
Occurrence time Exponential �B =5

Baseline Set I Weibull a=100 b=3
Set II Weibull a=80 b=2
Set III Weibull a=100 b=2

6
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Table II. The estimated power values in (a) Cases I and II when b2 =c·b1 and (b) in Case I when b2,i =c·b1,i , i=A, B or A×B

Estimated local power
(a)
Case c Estimated power A B A×B

I 0.75 0.312 0.207 0.283 0.236
0.50 0.905 0.419 0.569 0.395
0.25 0.999 0.710 0.872 0.523

II 0.75 0.330 0.213 0.279 0.237
0.50 0.895 0.444 0.580 0.377
0.25 0.999 0.688 0.827 0.549

(b)
Covariate

A 0.75 0.089 0.215 0.120 0.174
0.5 0.282 0.432 0.152 0.170

0.25 0.560 0.684 0.107 0.171
B 0.75 0.131 0.121 0.270 0.167

0.5 0.443 0.126 0.576 0.199
0.25 0.813 0.128 0.828 0.174

A×B 0.75 0.089 0.131 0.154 0.229
0.5 0.197 0.14 0.151 0.371

0.25 0.361 0.137 0.143 0.532

In the following studies, two cases will be investigated to show the effectiveness of the proposed technique for measuring
the deviations in the Cox model: (i) two different Cox models M1 and M2 for D1 and D2 (Section 3.1) and (ii) the stratified model
M∗ for the data set D={D1, D2} (Section 3.2).

Note that it is typical that the Cox PH model is fitted to the data set containing 50–100 subjects in survival analysis23 and
the tests for the model parameter b, such as the Wald test, score test, and likelihood ratio test, are performed based on the
asymptotic properties of estimator b̂. In industrial applications, it is very common that the real-world data set contains more data
points. Therefore, the results presented in this paper can be applied to the data set with sample size 50–100 or more in practice.

3.1. Different Cox models for two data sets

In this subsection, two different Cox models M1 and M2 are fitted to the simulated data sets D1 and D2. When we generate the
data, we assume b1 �=b2. Two cases are considered for the baseline parts: (I) the two data sets share the same baseline parameters
and (II) the two data sets have different baseline parts. Following the procedure illustrated in Figure 1, we will test the hypothesis
H0 :b1 =b2 vs H1 :b1 �=b2 and then find the (1−�)×100% pointwise confidence region for the times when S01(t)=S02(t). The
significance level for both tests is �=0.05.

We assume the coefficient vector b1 = [0.75, 1.0, 0.8]T and b2 =c·b1 in both cases, where c=0.75, 0.5, and 0.25, respectively.
The Weibull parameters in Case I for both data sets are a=100 and b=3. In Case II, the Weibull parameters D1 are a=100 and
b=3, but a=80 and b=2 are assumed for D2.

First, we generate 1000 pairs of D1 and D2 and calculate the statistic values in Equation (3). The estimated type-I error using
the simulated data sets are 0.054 and 0.053, respectively. Both results are close to the assumed confidence level �=0.05. The
estimated global power values for the hypothesis testing of H0 :b1 =b2 vs H1 :b1 �=b2 in both cases are summarized in Table II(a).
The power results are calculated by counting the number of pairs for which the change in b is correctly detected by the proposed
procedure. The estimated local powers for H0 :b1,i =b2,i vs H1 :b1,i �=b2,i , i=A, B or A×B, are also listed there. Based on the
results, we can see that the power values are pretty similar in these two cases, that is whether the baseline parts are the same or
not does not impact the power values for testing the equality of coefficient vectors. As the whole coefficient vector is changed,
the global power value is greater than the corresponding local power values.

We also calculated the global and local powers in Case I when only the effect of one covariate changes its value: b2,i =c·b1,i ,
i=A, B or A×B. The results can be found in Table II(b). The results tell us that the local test corresponding to the changed
coefficient provides a greater power value than the global test, and the local powers are very close to those bold values in
Table II(a).

Next we find the (1−�)×100% pointwise confidence region for the times when S01(t)=S02(t) in two cases. An example for a

pair of D1 and D2 can be found in Figure 2, which is the plot of standardized statistic �Ĥ0(t0) /
√

var[�Ĥ0(t0)] against t0 when the
two data sets share the same baseline part. Intuitively, there should be no points outside of the ‘control limits’ z�/2 and z−�/2
since the two data sets are assumed to have the same baseline survival curve. Both Figure 2(a) with the sample size N=200
and Figure 2(b) with N=500 show that there are no instances when S01(t) �=S02(t) since the whole curve of the standardized
difference in the cumulative hazards falls within the limits.
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Figure 2. Standardized difference in the baseline cumulative hazards in Case I: (a) N=200 and (b) N=500
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Figure 3. The baseline hazard function and survival function for Case II: (a) hazard rate function and (b) survival function

For the case that the baseline parts are different, the baseline hazard function and survival function of two Weibull distributions
are plotted in Figure 3.

An example is plotted in Figure 4 for the standardized difference against t0. From this figure we can obtain a 95% pointwise
confidence region for the times when S01(t) �=S02(t) by ensuring that all those points fall outside of the ‘control limits’. When the
sample size N is 200, the region is given by C200 ={t0|t0 ∈ [16.86, 116.62]}. The interpretation of the result is that, at each fixed
time point in this range, the two baseline survival functions are statistically different, and we can conclude that D1 has higher
early survival than D2. A larger sample size N=500 can provide a more accurate estimate of the baseline cumulative function
with smaller variance and the region in this case is C500 ={t0|t0 ∈ [3.93, 139.71]}, which is consistent with Figure 3(b).

3.2. The stratified Cox model for two data sets

In this subsection, the data sets are generated under the same coefficient vector b= [0.75, 1.0, 0.8]T but with different baseline
parts. The data set D1 has Weibull parameters a=100, b=3. Two cases are considered for D2 here: (III) a=80, b=2 and (IV)
a=100, b=2. Note that the Weibull parameters in Case III are the same as Case II in Section 3.1.

Let us begin with Case III with a pair of D1 and D2. When N=200, the value of statistic X2 is 1.77, which means that we
cannot reject the null hypothesis H0 :b1 =b2. Now we fit a stratified Cox model to the data and then a 95% confidence region
for the times when S01(t) �=S02(t) is given by C200 ={t0|t0 ∈ [7.57, 118.80]}. For the same data, N=500 gives the value of statistic
X2 as 4.71, the 95% confidence region is C500 ={t0|t0 ∈ [6.69, 125.10]}. The plot of the standardized difference in the baseline

cumulative function �Ĥ∗
0(t0) /

√
var[�Ĥ∗

0(t0)] is illustrated in Figure 5.

For Case IV, the baseline hazard function and survival function for the two data sets are found in Figure 6. Notice that
there is an intersection of the two baseline survival function in Figure 6(b). When N=200, the value of statistic X2 is 2.37,
and the 95% confidence region for the times when S01(t) �=S02(t) is C200 ={t0|t0 ∈ [11.17, 68.64]∪[118.41, 131.81]∪[133.12, 138.78]}.
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Figure 4. Standardized difference in the baseline cumulative hazards in Case II: (a) N=200 and (b) N=500
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Figure 5. Standardized difference in the baseline cumulative hazards in Case III: (a) N=200 (b) N=500

With N=500, we have the value of statistic X2 as 4.61, the confidence region is C500 ={t0|t0 ∈ [8.43, 91.28]∪[118.55, 163.98]}. The

plot of the statistic �Ĥ∗
0(t0) /

√
var[�Ĥ∗

0(t0)] is found in Figure 7. Again, the results are consistent with Figure 6(b).

3.3. Real event log analysis

In this subsection, we use real log files from a computer tomography (CT) machine to show the procedure for measuring the
deviations in the Cox PH model. CT log files record the occurrences of failure events and covariates and thus time-to-failure
data can be extracted from event logs. Log file D1 has 106 failure events and 13 censored time intervals, whereas there are
68 failure events and 50 censored time intervals in D2. Here censoring results from the preventive maintenance activities that
would cause replacement of the component of interests before its failure. Preventive maintenance activities are either scheduled
on a regular time basis or evoked by failures of other components/subsystems in the machine. Variable selection procedure was
implemented11 and finally two Cox models were fitted to the data. The results are listed in Table III.

Notice that three covariates (ZA(t), ZB(t), and ZC (t)) and all their interactions (ZA(t)×ZB(t), ZA(t)×ZC (t), ZB(t)×ZC (t), and
ZA(t)×ZB(t)×ZC (t)) are incorporated in the two models. Using AIC in a stepwise algorithm (‘stepAIC’ in R), we found that all the
terms should be kept in the final models M1 and M2. The results for testing the PH assumption are listed in Table IV. All p-values
are greater than the 5% significance level, and thus we could conclude that the PH assumption holds for all covariates in two
models.

The statistic value for the test H0 :b1 =b2 vs H1 :b1 �=b2 is 21.43, which tells us that there is a significant change in the effects
of the covariates. Indeed, we can see that the coefficient vectors b1 and b2 are different from Table III.
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Figure 6. The baseline hazard function and survival function for Case IV: (a) Hazard rate function (b) Survival function
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Figure 7. Standardized difference in the baseline cumulative hazards in Case IV: (a) N=200 (b) N=500

Table III. The Cox PH models for two event logs

Cox model 1 Cox model 2

Term b se p-value b se p-value

ZA 0.507 0.343 0.140 0.524 0.470 0.260
ZB 0.719 0.364 0.0480 −0.061 0.472 0.900
ZC 0.272 0.406 0.500 0.176 0.513 0.730
ZAB −0.348 0.544 0.520 0.221 0.706 0.750
ZAC 2.426 0.651 0.002 −0.196 0.837 0.820
ZBC 0.738 0.639 0.250 0.658 0.794 0.410
ZABC −3.158 0.969 0.001 −2.396 1.164 0.039

Figures 8(a) and (b) illustrate that there is some difference between the two baseline survival functions S01(t) and S02(t).
However, the plot of standardized difference in the baseline cumulative functions in Figure 8(c) shows that there are no instances
when S01(t) �=S02(t) since the whole curve falls within the limits. Although the curve in Figure 8(c) moves to the upper control
limit very quickly and closely, there is statistically no significant change in the baseline survival functions. In summary, the results
reveal that the usage patterns represented by the model coefficients are different but the inherent machine performance remains
the same.
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Figure 8. Comparison of the baseline survival functions for event logs: (a) D1; (b) D2; and (c) standardized difference

Table IV. Test results for the proportional hazards assumption

Model 1 Model 2

Term Chi-square p-value Chi-square p-value

ZA 0.526 0.468 0.025 0.873
ZB 0.602 0.438 0.960 0.327
ZC 1.159 0.282 0.881 0.348
ZAB 0.749 0.387 0.356 0.551
ZAC 0.468 0.494 3.167 0.075
ZBC 0.010 0.919 0.225 0.635
ZABC 1.912 0.167 0.125 0.724
GLOBAL 13.728 0.056 8.206 0.315

4. Concluding remarks

In this paper, we develop the methods to quantify the differences between the Cox PH models, which can relate the occurrence
of failure events to the covariates and is widely used in reliability modeling. In this study, a systematic methodology is developed
to compare the covariate coefficients and the baseline survival (cumulative hazard) functions for different Cox PH models. The
effectiveness of the developed technique is illustrated through numerical case studies and real-world data analysis with log files
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collected from CT scanners. The developed procedure can be used to detect the changes and thus update the reliability model
in practice where the Cox PH model fits the reliability data.

A very interesting open issue is, when �1 �=�2, to construct the simultaneous confidence band for the difference between the
baseline survival (cumulative hazard) functions of the two Cox models if we are interested in testing if the two baseline survival
(cumulative hazard) functions are equal over the entire time period. Lin et al.30 proposed a method to construct a simultaneous
confidence band for survival curves under the PH model through a simulation procedure. The results along this direction based
on this result will be reported in a future work.
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Appendix A

A.1. Proof of Lemma 1

As M1, M2 are two Cox PH models induced by the two reliability data sets D1 and D2, we have (Theorem VII.2.2 in Reference24),

(b̂j −bj)
D−→N(0,Rj), j =1, 2, (A1)
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where bj is the true parameter vector for the model j. Under null hypothesis H0 :b1 =b2, since the random variables b̂1 and b̂2
are independent of each other, this yields

(b̂1 − b̂2)
D−→N(0,R1 +R2). (A2)

As the covariance matrix (R1 +R2) can be estimated consistently by (R̂1 +R̂2), this leads to the test statistic given by Equation (3)

X2 = (b̂1 − b̂2)T(R̂1 +R̂2)−1(b̂1 − b̂2), (A3)

which has a chi-squared distribution with p degrees of freedom and p is the length of b1 or b2 (refer to the large-sample tests
based on likelihood theory in Reference23).

Under alternative H1: b1 �=b2, the statistic (A3) follows a non-central chi-squared distribution with the estimated non-central
parameter �̂, thus the power of the hypothesis testing given the significance level � can be estimated as

1− �̂=Pr(X2(�̂)>�2
p,1−�), (A4)

where X2(�̂) is a non-central �2 random variable with p degrees of freedom and the estimated non-centrality parameter is
�̂= (b1 −b2)T(S1 +S2)−1(b1 −b2), where bj and Sj , j=1,2, are the estimates of the coefficient vector and covariance matrix from
the data. �
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