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Fault detection and diagnosis for dynamic processes is an intensively investigated area. However, the problem of determining whether
or not system faults can be successfully detected based on the output measurements for a given dynamic process remains an open
research topic. An intrinsic definition of fault detectability in multivariate dynamic processes is proposed in this paper. It defines the
detectability in an intrinsic manner as a system property, without any reference to any specific fault detection algorithm. Furthermore,
the relationship between system structure and the detectability for mean change faults and variability change faults are investigated.
Analytical criteria for checking the system detectability are established. The results presented in this paper can provide guidelines
on system design improvement for process monitoring and control. A case study is presented that illustrates the effectiveness of the
proposed methods.

Keywords: Fault detection, detectability, multivariate dynamic system, statistical monitoring

1. Introduction

Statistical Process Control (SPC) plays a very important
role in quality and productivity improvement of a manu-
facturing or service enterprise (Montgomery, 2005). Fol-
lowing SPC methodology, measurements are taken from
the process or the product, they are then treated as ran-
dom variables and their distributions are compared with
the distributions under normal working conditions. If the
measurements show that some characteristics are “out of
control” (e.g., deviation from the target or variability is
too high), an alarm is generated to indicate that changes
have occurred in the process. For most of the available SPC
techniques, the measurements are often either explicitly or
implicitly assumed to be independent and identically dis-
tributed (i.i.d.).

Due to the rapid development of information and sens-
ing technologies in recent years, a large amount of data is
now readily available in many processes. Multi-dimensional
measurements for discrete manufacturing processes with
100% inspection rate and very high sampling rates for
continuous processes are no longer rare in practice. For
example, in autobody assembly processes, 100% dimen-
sional inspections have been achieved by the use of in-
line optical coordinate measurement machines (Ceglarek
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and Shi, 1995). The extensive datasets provide significant
opportunities for more sophisticated analysis for process
monitoring, however, on the other hand, it also poses great
challenges for SPC. Because of the very high sampling fre-
quency and system inertia, the measurements often exhibit
significant autocorrelation (Montgomery, 2005). Many re-
searchers have demonstrated that the performance of SPC
methods developed with i.i.d. assumptions will degrade
when there exists dependence between successive sam-
ples (e.g., Harris and Ross (1991) and Montgomery and
Mastrangelo (1991)). These works indicate that, for mea-
surements with significant autocorrelation, dynamic mod-
els rather than static models should be used to fully utilize
the measurements for process monitoring purposes.

The most commonly used dynamic models in SPC
are time series models such as the AR(p) model (Alwan
and Roberts, 1989; Montgomery and Mastrangelo, 1991)
and the IMA (1, 1) model (MacGregor, 1988; Box and
Kramer, 1992; Vander Wiel, 1996). People often fit the auto-
correlated measurements using these models and because
the model residuals are considered to be i.i.d., the conven-
tional SPC techniques can then be applied to the residuals.
Most of the available SPC methods that are based on time
series model approaches only handle univariate cases. To
monitor multivariate dynamic processes a state space model
is often used to model the process dynamics. Negiz and
Cinar (1997) used subspace identification methods to es-
tablish a state space model for the measurement data under
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normal conditions, and then the prediction of the state
vector is monitored through a T2 control chart. Simoglou
et al. (2002) used a similar approach and compared differ-
ent techniques for the fitting of state space models. In addi-
tion to model-based methods, various model-free methods
have also been developed for multivariate dynamic pro-
cess monitoring, for example, methods based on asymptot-
ical optimal sequential testing (Basseville and Nikiforov,
1993; Lai, 1995) and various Principal Component Analy-
sis (PCA)-related methods, such as recursive PCA (Li et al.,
2000), multiscale PCA (Bakshi, 1998) and dynamic PCA
(Ku et al., 1995).

Although various works exist on the statistical monitor-
ing of univariate and multivariate dynamic processes, a fun-
damental issue regarding process monitoring has not been
thoroughly studied in past work. The issue is whether the
process measurements contain sufficient information for
the detection of process changes. This is referred to as de-
tectability analysis and it is very important, especially in the
design phase, because if a process is not detectable due to a
problematic system structure, then no matter how much ef-
fort we put into the creation of a monitoring algorithm, we
will not be able to detect process faults. Thus, if we blindly
use statistical monitoring methods without any considera-
tion of the process detectability, we may miss the changes
that we want to detect. For example, Harris and Ross (1991)
and Wardell et al. (1994) noticed that the one-step-ahead
residual approach lacks the ability to detect changes in a
time series with AR poles close to the unit circle. However,
despite its importance, few papers have been published on
the topic of exploring general detectability issues.

Since process changes are always caused by the occur-
rence of process faults, we treat “change detection” and
“fault detection” as being interchangeable in this paper.
Basseville (2001) provided a good review on various def-
initions of fault detectability for different types of faults.
In that paper, the process faults are classified as being ei-
ther: (i) additive faults on a linear system, which are mani-
fested as a mean change of the process inputs and process
outputs, or (ii) component (or system) faults, which are
manifested as process structure changes such as the vari-
ance change of the multivariate process inputs. For each
type of fault, the detectability definitions can be put into
one of two categories: (i) an intrinsic definition that defines
the detectability in an intrinsic manner as a system prop-
erty, without any reference to any specific fault detection
algorithms; or (ii) a performance-based definition that de-
fines the detectability with explicit reference to a specific
algorithm, taking into account its performance. Using the
above classification, Zhou et al. (2003) and Apley and Ding
(2005) investigated the properties of an intrinsic fault de-
tection definition for both additive (i.e., mean shift of the
input) and component faults (i.e., variance change of the
input) in a static system. In their work, the process mea-
surements are viewed as being i.i.d. and no autocorrelation
and system dynamics are considered. On the other hand,

Liu and Si (1997) and Gustafsson (2002) studied the prop-
erties of a performance-based detection definition only for
additive faults in general dynamic systems. In their work, a
state space model is adopted to model the system dynamics
and the system observability is utilized to derive the system
fault detectability.

In this paper, we will provide an intrinsic fault detectabil-
ity definition for both additive and component faults in mul-
tivariate dynamic processes. A state space model is used to
describe the system dynamics. A random vector is added to
the system input to represent the faults. In this way, both the
mean shift fault (i.e., additive fault) and variance change
fault (i.e., a type of component fault) can be modeled. This
fault representation can describe a wide range of practical
situations and has been adopted in several previous works
such as in Negiz and Cinar (1997), Chen et al. (1998) and
Zhou et al. (2003). With the fault representation, an intrin-
sic detectability definition is proposed and the relationship
between the defined detectability and the system structure
is further investigated in this paper. The conditions under
which the system detectability is guaranteed are derived.
The results developed in this paper can be used to ana-
lyze the process structure to check if certain process faults
are detectable and consequently provide quantitative guide-
lines on system design to improve the performance of the
statistical monitoring scheme.

The paper is organized as follows: In Section 2, we will
give a formal definition of the detectability. Then, the con-
ditions of mean detectability and variance detectability will
be explored, respectively. We also provide a corollary to eas-
ily check a system’s detectability. In Section 3, a case study
will be given to show the effectiveness of our method, and
some possible applications of the result will also be pointed
out. The paper is concluded in Section 4.

2. Intrinsic detectability of multivariate dynamic
processes

2.1. Problem formulation

Linear Time Invariant (LTI) state space models are widely
used because this approach can closely approximate many
real systems and has a simple structure for analysis. Indeed,
many dynamic models such as time series models can be
easily transformed to a state space format (Aoki, 1990). In
this paper, we adopt the state space model as a descrip-
tion of system dynamics. In the most generalized form, a
stochastic LTI model with random noises and disturbances
can be expressed in the following way:{

xk+1 = Axk + Buuk + B f fk + Bwwk,

yk = Cxk + Duuk + D f sk + vk,
(1)

where xk ∈ �n×1, uk ∈ �l×1, fk ∈ �p×1, sk ∈ �s×1, wk ∈
�r×1, vk ∈ �m×1, yk ∈ �m×1 are state variables, input vari-
ables, process faults, sensor faults, process noises, output
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noises and output measurements, respectively; the matrices
A, Bu , B f , Bw, C, Du , D f are the corresponding coefficient
matrices with appropriate dimensions. For a LTI system,
these matrices are constant matrices and are determined by
the intrinsic structure of the process. In many cases, this
model can be further simplified to fit real conditions. For
example, in many processes, the input does not have a direct
influence on the output. Therefore, the term of Duuk can be
often omitted in the output equation in model (1). Addi-
tionally, the sensor faults, represented by sk, can be often de-
tected through redundancy by placing additional sensors to
measure the same variables. Moreover, many sensor faults
can be transformed into the form of an actuator fault (e.g.,
Massoumnia et al. (1989)). Other techniques such as the
direct redundancy method can be also adopted to handle
sensor faults. Properly designed algorithms can be further
used to differentiate the sensor and actuator faults after
studying the detectability of the system. With these con-
siderations and for the sake of simplicity, we mainly focus
on the detectability of the actuator faults fk. The simplified
model adopted in this paper is

{
xk+1 = Axk + Buuk + B f fk + Bwwk,

yk = Cxk + vk.
(2)

The following assumptions are made regarding this model:

1. The system and measurement noises wk and vk are a
white noise sequence with zero mean and covariance
matrix �w, �v respectively.

2. Because different faults are often due to different phys-
ical causes, it is reasonable to assume the independence
among different faults, i.e., � f is assumed to be a diag-
onal matrix. We also assume that the fault vector fk is
independent with system noises wk and vk.

These assumptions are not strict in real applications and
similar assumptions are adopted in various previous studies
such as Ding et al. (2002) and Zhou et al. (2003).

With the dynamic process model (2) and the above as-
sumptions, the problem we want to address in this paper
can be formulated as follows: Under normal working con-
ditions, the mean and variance of process faults fk are µ1
and � f 1, while under an abnormal working condition, the
corresponding values become µ2 and � f 2, respectively. Can
these changes be detected based on the monitoring of the
measurements of the system outputs yk? In other words,
what are the sufficient and necessary conditions for the de-
tectability of process faults and how to test if the current
system structure satisfies these conditions? The answers to
these questions can guide us to design a system and ensure
system detectability.

To address the above problem, model (2) needs to be
transformed into a form that can more conveniently capture
the autocorrelation structure of the output measurements

as follows:⎡
⎢⎢⎢⎣

yk+1

yk+2

...
yk+N

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

CA

CA2

...
CAN

⎤
⎥⎥⎥⎥⎦ xk + �u

⎡
⎢⎢⎢⎢⎣

uk

uk+1

...
uk+N−1

⎤
⎥⎥⎥⎥⎦

+ � f

⎡
⎢⎢⎢⎣

fk

fk+1

...
fk+N−1

⎤
⎥⎥⎥⎦ + �w

⎡
⎢⎢⎢⎢⎣

wk

wk+1

...
wk+N−1

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

vk+1

vk+2

...
vk+N

⎤
⎥⎥⎥⎥⎦ , (3)

where N ≥ n. To simplify the notation, we define �α (α can
be u, f or w) and � as follows:

�α =

⎡
⎢⎢⎢⎢⎣

CBα

CABα CBα

...
...

. . .

CAN−1Bα CAN−2Bα · · · CBα

⎤
⎥⎥⎥⎥⎦ , � =

⎡
⎢⎢⎢⎢⎣

CA

CA2

...

CAN

⎤
⎥⎥⎥⎥⎦ .

(4)

We further define YN
k+1 = [ yT

k+1 yT
k+2 · · · yT

k+N ]T, UN
k =

[ uT
k uT

k+1 · · · uT
k+N−1 ]T, FN

k = [ fT
k fT

k+1 · · · fT
k+N−1 ]T, WN

k =
[ wT

k
wT

k+1
· · · wT

k+N−1
]T, VN

k+1 = [ vT
k+1 vT

k+2 · · · vT
k+N ]T, and fi-

nally we have:

Hk = �xk + � f FN
k + �wWN

k + VN
k+1, (5)

where Hk is defined as YN
k+1 − �wUN

k and it is measurable
because both YN

k+1 and UN
k are measurable and the

coefficient matrices are assumed to be known, while the
terms on the right-hand side involve variables that could
not be directly observed. Based on the model expressed
in Equation (5), an intrinsic detectability definition can
be established as follows. A similar definition for a static
process instead of a dynamic process has been adopted
in previous works (Rao and Kleffe, 1988; Zhou et al.,
2003).

Definition 1. In model (5), the system is said to be mean
detectable, if ∀E(1FN

k ), E(2FN
k ) and k:

E
(1FN

k

) �= E
(2FN

k

)
implies E

(1Hk
) �= E

(2Hk
)
. (6)

The system is said to be variance detectable, if ∀ var(1FN
k ),

var(2FN
k ) and k:

var
(1FN

k

) �= var
(2FN

k

)
implies var

(1Hk
) �= var

(2Hk
)
,

(7)
where E(·) and var(·) represent the expectation and vari-
ance of the random variables. The left superscript 1 and
2 represent two different working conditions of the pro-
cess and in each working condition, the mean and variance
of the faults are kept as constants. The basic idea of this
definition is that if the system is detectable, the changes
in the mean and covariance of the faults in two different
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working conditions should result in the mean and covari-
ance changes of observations. This property is an intrin-
sic property of the system because it is not related to any
specific monitoring algorithm. The autocorrelation of the
system output is automatically considered in the definition
because YN

k+1 is a stack up of N output values and the
covariance of YN

k+1 actually represents the autocorrelation
among the output values. In the definition, it seems that the
process detectability is related to the number of the stacked
measurements N. However, the analysis in the following
sections shows that the process detectability is actually not
related to N given N ≥ n. Note also that in the definition,
we are interested in detecting the change of the fault vector,
which may be caused by a single fault element or multi-
ple concurrent faults. Under this setting, the detectability
analysis would automatically consider multiple concurrent
faults. Another point that needs to be mentioned regard-
ing the definition is that we only consider the relationship
of mean and covariance between system observations and
faults. If the random variables involved in the system follow
a normal distribution, then the mean and covariance can
completely determine the distribution. However, for other
distributions, there could be conditions that even if the
system is not detectable based on the mean and variance,
the change in the system could still be detected through
the analysis of higher order statistics of the measurements.
However, to limit the scope of this paper, we will focus on
the mean and variance detectability as above defined. We
only consider step changes in the mean and variance, al-
though gradual drifting changes can be analyzed through
similar methodologies.

2.2. System detectability analysis

Based on model (5), we can get the mean and covariance
of the observations:

E(Hk) = �E(xk) + � f E
(
FN

k

) + �w E
(
WN

k

) + E
(
VN

k+1

)
,

(8a)
var(Hk) = � × var(xk) × �T + � f × var

(
FN

k

) × �T
f + �w

×var
(
WN

k

) × �T
w + var

(
VN

k+1

)
. (8b)

Please note that because FN
k , WN

k and VN
k+1 collect the

faults and noises that occur at and after time k, they
are independent of the system state xk at time k. Since
we assume that wk, and vk have zero means, therefore
E(WN

k ) = 0 and E(VN
k+1) = 0. In many applications, the

variance of noises is much smaller than that of faults,
thus �w × var(WN

k ) × �T
w and var(VN

k+1) can be neglected
with the presence of � f × var(FN

k ) × �T
f . Another justi-

fication is that, under normal conditions without pro-
cess faults, we can estimate the covariance of both wk
and vk accurately with large samples. Therefore, we ex-
plore the detectability condition of faults without taking
the last two terms of Equation (8b) into consideration.

Meanwhile, under normal working conditions, we can es-
timate the mean and covariance matrix of the state vari-
able xk as well. With these considerations, it is easy to see
that the detectability analysis boils down to the follow-
ing problem: does E(1FN

k ) �= E(2FN
k ) imply � f × E(1FN

k ) �=
� f × E(2FN

k )? And does var(1FN
k ) �= var(2FN

k ) imply � f ×
var(1FN

k ) × �T
f �= � f × var(2FN

k ) × �T
f ? The following two

lemmas provide the sufficient and necessary conditions for
mean detectability and variance detectability of a given
system, respectively. It is worth mentioning that for a fault
with both mean shift and variance change, the following
analysis is still applicable as long as our concern is the fault
detectability.

Lemma 1. The system is mean detectable, if and only if
rank(OBf ) = p, where p is the dimension of fault vectors,
and O is the observability matrix of the system, defined as

O =

⎡
⎢⎢⎢⎢⎣

C
CA

...

CAn−1

⎤
⎥⎥⎥⎥⎦ (n is the system order). (9)

Proof. First, we prove if rank(OB f ) = p, then the system
is mean detectable. Since E(fk) is assumed to be constant
for a given working condition, we have:

� f
[
E

(1FN
k

) − E
(2FN

k

)] =

⎡
⎢⎢⎢⎢⎣

I
I I
...

...
. . .

I I · · · I

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎣

C
CA

...

CAN−1

⎤
⎥⎥⎥⎥⎦

× B f × (µ1 − µ2) def= M × (µ1 − µ2), (10)

by rearranging the � f matrix, where µ1 and µ2 are the
mean of the process faults under two different conditions,
respectively. Furthermore, through the Cayley Hamilton
theorem (Lancaster, 1969), we have:

ON =

⎡
⎢⎢⎢⎢⎣

C
CA

...

CAN−1

⎤
⎥⎥⎥⎥⎦ = QO, where Q ∈ �Nm×nm and

Q =
[

Inm

Q∗

]
when N ≥ n (Q∗ is the submatrix with
dimension (N − n)m × nm), which is full
column rank.

Therefore, rank(ON× B f ) = rank(QOB f ) = rank(OB f ) = p
when N ≥ n, since left multiplication by a full column rank
matrix does not change the rank. With the same argument,
we can find that M can be obtained by left multiplying a
full column rank matrix on ON× B f , therefore, rank(M)
= p, which indicates that M is full column rank. Thus
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the null space of M is empty and for any µ1 �= µ2, we
will have M × (µ1 − µ2) �= 0, and hence � f × E(1FN

k ) �=
� f × E(2FN

k ).
Next, we prove if the system is mean detectable, then rank

(OB f ) = p. Using similar arguments, we can show that if
the system is mean detectable, then the null space of the
M matrix defined in Equation (10) should be empty and
thus we should have rank(M) = p. Furthermore, since p
= rank(M) ≤ rank(OB f ) ≤ p, we can get rank(OB f ) = p
accordingly. �

There is an intuitive understanding of this lemma from
the space mapping point of view as shown in Fig. 1. B
is the mapping from fault space �p×1 to the state space
�n×1, and the C matrix is the mapping from state space
�n×1 to output space �m×1. In statistical monitoring, we
try to detect the process change based on the analysis of
process outputs, thus the mapping is actually in the reverse
direction: C−1 is the inverse output mapping from �m×1 to
�n×1, and B−1 is the inverse input mapping from �n×1 to
�p×1 with � defined as Im(B−1). We can further define the
unobservable subspace � = {x|Ox = 0} in the state space,
while the inverse mapping from output space to state space
cannot be located in the unobservable subspace.

In Fig. 1, the darker area in the state space of �n×1 rep-
resents the image of mapping B, denoted by Im(B); the
white area represents the unobservable subspace. While in
statistical monitoring, if we want to detect the changes
in the fault vectors, we need to have the mapping B:
�p×1 →Im(B) be bijective, which means B should be full
column rank, to make sure of the one-to-one correspon-
dence between the fault and its image. Furthermore, if
there are any images falling into the unobservable space,
i.e., ∃f �= 0, s.t. OB f f = 0, then for some changes in f, the
observations will not reflect that change. Therefore, to be
fully detectable, the intersection between the image of map-
ping B and the unobservable subspace should be empty, i.e.,
�∩Im(B) = Ø, which requires ∀f �= 0, s.t. OB f f �= 0. This
condition is exactly equivalent to rank(OB f ) = p.

Similarly, we can also get the sufficient and necessary
condition for variance detectability, as stated by Lemma 2.

Lemma 2. The system is variance detectable, if and only if
rank(�(OBf )) = p, where �(·) is defined as

�(�) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ 1 ⊗ γ 1

...
γ 1 ⊗ γ mN

γ 2 ⊗ γ 2

...
γ 2 ⊗ γ mN

...
γ mN ⊗ γ mN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where γ i is the ith row of the matrix �, mN is the total
number of rows in � and ⊗ represents the Hadamard product
defined as (A ⊗ B)ij = Aij × Bij, where the subscript ij rep-
resents the ith row, jth column element of the corresponding
matrix.

Proof. First, we prove if rank(�(OB f )) = p, then the sys-
tem is variance detectable. Denote �1 and �2 as the co-
variance matrix of the process faults for two different con-
ditions. By rearranging the matrix � f and noting that the
covariance matrix of the process faults is a diagonal matrix,
we can get

vec
(
� f × var

(1FN
k

) × �T
f

) = �(� f ) × diag

×

⎛
⎜⎜⎝

⎡
⎢⎢⎣

�1
�1

. . .
�1

⎤
⎥⎥⎦

⎞
⎟⎟⎠ = �(� f ) ×

⎡
⎢⎢⎣

Ip
Ip
...

Ip

⎤
⎥⎥⎦ × diag(�1),

(11)

where vec(·) is an operator that stacks up the upper triangle
of a symmetric matrix to form a column vector, and diag(A)
is the column vector composed of the diagonal elements in
A. A similar identity holds for the second condition. We can
further rewrite � f as � f = [ T1 T2 · · · TN ] where Ti is the
matrix consisting from [(i − 1)p + 1]th to [ip]th columns
of � f . Due to the property of � transformation, we have
�(� f ) = [�(T1) �(T2) · · · �(TN) ].

Fig. 1. Space mapping in fault diagnosis.
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Furthermore, due to the property of � f , each non-zero
row in Ti (i ≥ 2) is identical to one particular row in T1.
Therefore, each non-zero row in �(Ti ) is identical to one
row in �(T1). We have:

�(Ti ) =
[

0 0
P∗

i 0

]
× �(T1)

de f= Pi × �(T1),

where Pi is a permutation matrix and P∗
i is in the lower

triangle of Pi for i ≥ 2. Therefore

�(� f ) ×

⎡
⎢⎢⎢⎢⎣

Ip

Ip

...
Ip

⎤
⎥⎥⎥⎥⎦ =

N∑
i=1

�(Ti ) =
(

I +
N∑

i=1

Pi

)
× �(T1)

=
[

I 0
P∗ I

]
× �(T1)

def= P × �(T1). (12)

Obviously, P is an invertible matrix. Additionally, when
N ≥ n, by the definition of � transformation, we have:

�(ONB f ) =
[

I
Q∗

]
× �(OB f )

def= Q × �(OB f ),

where

ON =

⎡
⎢⎢⎢⎢⎣

C
CA

...

CAN−1

⎤
⎥⎥⎥⎥⎦ .

Clearly, Q is a full column rank matrix, and noticing T1 =
ONB f , we have rank(P × �(T1)) = p if rank(�(OB f )) =
p. Therefore, if �1 �= �2 and rank(�(OB f )) = p, then
� f × var(1FN

k ) × �T
f �= � f × var(2FN

k ) × �T
f because the

null space of P × �(T1) is empty.
Next, we prove that if the system is detectable, then

rank(�(OB f )) = p. If the system is variance detectable,
∀�1 �= �2, and thus var(1FN

k ) �= var(2FN
k ), we can get:

vec
[
� f × (

var
(1FN

k

) − var
(2FN

k

)) × �T
f

] = P × �(T1)
× (diag(�1) − diag(�2)) �= 0.

This implies that P ×�(T1), as defined above, should be full
column rank. We have p ≤ rank(�(T1)) ≤ rank(�(OB f ))
≤ p. This proves that rank(�(OB f )) = p is the necessary
condition of variance detectability. �

The above two lemmas provide a powerful tool to check
whether the system is detectable in terms of mean shift
and variance change of the process faults. Although step
change assumptions are made during the derivation, the
two conditions still work for linear drifting changes through
a straightforward extension, and can be used to check the
detectability of that kind of change. From the lemma, it
is also clear that the detectability has a close relationship
with the coefficient matrix B f and the observability matrix

O of the system. The above results can be further simplified
through a state transformation to change the coordinate of
the system.

From control theory, we can always find an invert-
ible matrix G to transform the state to x̃ = G−1x (Rugh,
1996):⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x̃k+1 =
[

Ã11 0

Ã21 Ã22

]
x̃k +

[
B̃u,q

B̃u,n−q

]
uk +

[
B̃ f,q

B̃ f,n−q

]
fk

+
[

B̃w,q

B̃w,n−q

]
wk,

yk = [
C̃q 0

]
x̃k + vk,

(13)

where B̃u,q ∈ �q×l , B̃ f,q ∈ �q×p , B̃w,q ∈ �q×r and C̃q ∈
�n×q . Thus, the observability matrix can be written as

Õ =

⎡
⎢⎢⎢⎣

C̃q 0
C̃qÃ11 0

...
...

C̃qÃn−1
11 0

⎤
⎥⎥⎥⎦ ,

and hence

ÕB̃ f =

⎡
⎢⎢⎢⎢⎣

C̃q

C̃qÃ11

...

C̃qÃn−1
11

⎤
⎥⎥⎥⎥⎦ × B̃ f,q

def= Õq × B̃ f,q = OB f . (14)

State transformation does not change the observability,
therefore rank(Õq ) = rank(O) = q. However, the Õq

has full column rank, thus rank(OB f ) = rank(ÕB̃ f ) =
rank(B̃ f,q ); similar results hold for variance condition
rank(�(OB f )) = rank(�(ÕB̃ f )) = rank(�(B̃ f,q )). Based
on these results, we have the following corollary.

Corollary 1. Let G−1 be the state transformation to the form
of Equation (13) and B̃f,q be the first q rows of the transformed
fault matrix G−1Bf , then:

1. The system is mean detectable, if B̃ f,q has full column
rank.

2. The system is variance detectable, if the columns of B̃ f,q
do not meet all the following three conditions (define
B̃ f,q = [ t1 t2 · · · tp ]):
C1. There exist two disjoint subsets of column vectors

of B̃ f,q , {ti1, ti2, ···, tih} ∩ {t j1, t j2, ···, t jg} = φ, and one
subset can be represented as the linear combination
of the other: [ ti1 ti2 ... tih ] = [ t j1 t j2 · · · t jg ]β.

C2. g ≤ h.
C3. There exists a non-zero diagonal matrix � such that

β�βT is diagonal.
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Proof.

1. Since rank(OB f ) = rank(ÕB̃ f ) = rank (B̃ f,q ), therefore,
the mean detectable condition rank(OB f ) = p is equiv-
alent to B̃ f,q has full column rank.

2. With rank(�(OB f ))=rank(�(ÕB̃ f )) = rank (�(B̃ f,q )),
we can also obtain the sufficient and necessary variance
detectability condition to be rank(�(B̃ f,q )) = p. Zhou
et al. (2003) pointed out that:

rank(�(B̃ f,q ))=rank

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

(
tT
1 t1

)2 (
tT
1 t2

)2 · · · (
tT
1 tp

)2(
tT
2 t1

)2 (
tT
2 t2

)2 · · · (
tT
2 tp

)2

...
...

. . .
...(

tT
pt1

)2 (
tT

pt2
)2 · · · (

tT
ptp

)2

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠ .

(15)

Based on the study reported in Apley and Ding (2005),
the right-hand side of Equation (15) being p is equiva-
lent to the conditions C1 to C3 not being simultaneously
satisfied. This completes our proof. �

Although conditions C1 to C3 seem more complicated
than the condition of rank(�(OB f )) = p, Corollary 1 pro-
vides us with an easy way to check whether the system is
variance detectable based on the system matrices directly
without � transformation. As we will see in the next sec-
tion, this is especially helpful when we want to design a
system matrix to improve system detectability.

2.3. Application of detectability analysis in system design

Based on the lemmas and corollary introduced in the pre-
vious section, we can easily check whether the system is
detectable given the state space model. A point that needs
mentioning is that in Section 2.2 it is assumed that differ-
ent faults are not cross-correlated. However, this restriction
can be relaxed once we know their cross-correlation struc-
ture. If the covariance matrix of f is not diagonal, there
always exists a linear transformation of f to make the co-
variance matrix of the transformed variables a diagonal
matrix. Then, the above results on detectability analysis can
still be applied. It is also clear that mean detectability al-
ways implies variance detectability. Therefore, if the system
is mean detectable, it is always variance detectable; but not
vice versa. For Autoregressive Moving Average (ARMA) or
Vector ARMA (VARMA) models, we first transform them
into a state space model as summarized in Aoki (1990),
and then use the lemmas above to study their detectabil-
ity conditions. For the ARMA model, since there is only
one univariate input variable, we could always use mini-
mal realization to make the state space model observable.
Therefore, the ARMA model should always be both mean
and variance detectable. However, for the VARMA model,
because there are multiple inputs and outputs, the situation
becomes more complicated. There is no simple conclusion

about the detectability of VARMA models. The above lem-
mas need to be applied to get the results for individual
cases.

If the system is not detectable due to the design, we can
find possible solutions to revise the system design based
on the guidelines provided by the detectability analysis. We
would like to articulate this point as follows.

For mean detectability, the guideline is intuitive: just
modify B̃ f,q to make B̃ f,q be full column rank. If we can
make the system mean detectable, the variance detectabil-
ity would be automatically ensured. There are also cases in
which the mean detectability is not important but the vari-
ance detectability is required. It is still possible to make the
variance detectable even if the mean detectability cannot be
reached. The variance detectability requires �(B̃ f,q ) be full
rank. However, the relationship between the changes in the
matrix B̃ f,q and the rank of �(B̃ f,q ) is not clear. Corollary
1 provides us with some guidelines to look into this rela-
tionship. The corollary indicates that the rank deficiency
of �(B̃ f,q ) is caused by the existence of two column sub-
sets which meet the conditions C1 to C3 simultaneously.
Therefore, when the variance change is not detectable, we
can identify these subsets and redesign them accordingly to
make them violate those conditions. An example is demon-
strated in the numerical case study section. The above
mentioned principles are summarized into the following
procedures.

If the system is not mean detectable, the following steps
can be followed.

1. Transform the system into the form of Equation (13),
and get B̃ f,q , which is q × p matrix.

2. If q < p, only revising B is not enough. The sensor place-
ment needs to be revised, i.e., to modify the C matrix to
increase the observability index to at least p. If this does
not happen then the system cannot be mean detectable
given the current dimension of state, input and output.

3. If q ≥ p or procedure 2 succeeds, but the new B̃ f,q is still
rank deficient, revise the corresponding columns of B̃ f,q
to make it full rank.

4. Transform the B̃ f,q back to the original coordination
to get B, and double check whether this revised design
can be implemented. If not, return to procedure 3 for
another optional design.

If the system is not variance detectable, and B̃ f,q is a
q × p matrix, the following steps can be followed.

1. If p > max(2q, q(q + 1)/2), then revise the C matrix to
increase the observability index q to violate the inequal-
ity. If failed to do so, the system could not be variance
detectable.

2. Otherwise, find the column subsets that can meet condi-
tions C1 to C3 in the corollary simultaneously, and then
revise the corresponding vectors to make them violate
at least one condition.



600 Chen and Zhou

3. Transform B̃ f,q back to B to see if this design can be
implemented. If not, return to step 2 and get another
optional design.

We would like to mention that we can change the entries
of B̃ f,q freely by only modifying the B matrix, however, we
could not change its dimension in this way. If the dimen-
sion of B̃ f,q is not capable of being detectable, we need to
increase the observability index by changing A and C. We
can also change the entries of B̃ f,q by changing A and C,
but this method is not so straightforward compared with
changing the B matrix. It can also be noted that although
the design of mean detectability seems straightforward, the
one for variance detectability may need several trials. The
following section presents a numerical case study to demon-
strate the effectiveness of the above methods.

3. Numerical case study

3.1. Case studies for detectability analysis

In this section, we will illustrate the effectiveness of our
detectability analysis and its applications in dynamic sys-
tem monitoring. The monitoring of multivariate dynamic
processes such as chemical processes is quite difficult be-
cause of the autocorrelated structures of the measurement
data. As widely adopted, the dynamic processes are usu-
ally modeled as state space models in statistical monitoring
literature:

{
xk+1 = Axk + Bfk,

yk = Cxk + εk.
(16)

Clearly, model (16) is a special case of model (2). This
model has been used to monitor chemical processes such as
the HTST Pasteurization process (Negiz and Cinar,1997;
Kosebalaban and Cinar, 2001; Lee et al., 2004). In HTST
processes, measurements such as product temperature, in-
let temperature, residence time and steam temperature are
collected. The process dynamic comes from the heat trans-
fer between different flows. Typical faults in this process
include a high variability of the inlet temperature, variable
constant flow rate, and so forth. Negiz (1995) used con-
servation laws to build up the mathematical model and the
canonical variates method to get a data-driven model in the
form of Equation (16). One of the monitoring techniques
for this model is to monitor the residuals of this model us-
ing a T2 statistic. In our case study, we will adopt the same
model structure as given in Equation (16). However, we
will make necessary modifications on the dimensions and
entries of the system matrices to better illustrate the dif-
ferent diagnosability conditions and their impacts on the
effectiveness of monitoring schemes. The example we will
use to demonstrate our analysis is shown in Equation (17)
and the residual-based T2 chart will serve as the monitoring

scheme for detectability comparison.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1=

⎡
⎢⎢⎢⎣

−0.5 −1 1 −1

0 −1.5 1 −1

1 −3 2.5 −3

1 −2 2 −2.5

⎤
⎥⎥⎥⎦ xk+

⎡
⎢⎢⎢⎣

0 0 1 0

−1 0 −1 −1

0 1 0 0

0 0 −2 −1

⎤
⎥⎥⎥⎦ fk

yk =

⎡
⎢⎣

1 −1 0 0

1 −2 1 −1

2 −3 1 −1

⎤
⎥⎦ xk+ εk.

,

(17)

Without loss of generality, we assume that fk and εk fol-
low a multivariate normal distribution with zero mean and
covariance matrix as identity under normal working con-
ditions. According to Corollary 1, the model is first trans-
formed into the form of Equation (13), and B̃ f,q can be
obtained as

B̃ f,q =
[

1 0 2 1
1 1 3 2

]
. (18)

It is easy to verify that rank(B̃ f,q ) = 2, and rank(�(B̃ f,q )) =
3. Based on Lemmas 1 and 2, it can be concluded that the
system is neither mean detectable nor variance detectable.
Alternatively, we can also check the variance detectability
by looking into the dependence structure of B̃ f,q directly
by using Corollary 1. It is easy to find that:[

2 1
3 2

]
=

[
1 0
1 1

]
×

[
2 1
1 1

]
and

[
2 1
1 1

]
×

[−0.5 0
0 1

]

×
[

2 1
1 1

]
= −

[
1 0
0 −0.5

]
. (19)

In other words, there exist two column subsets which satisfy
conditions C1 to C3, therefore, the system is not variance
detectable.

In order to illustrate the consequences of the non-
detectability, we established a residual-based T2 control
chart developed by Kosebalaban and Cinar (2001) to moni-
tor the process. In the monitoring scheme, first, the Kalman
filter method is used to estimate the state variable x̂k, then
the output residual ek = yk − Cx̂k is computed. Finally a
T2 statistic of ek is established for monitoring, i.e., we mon-
itor the variable Tk = (ek − ē)T�−1

k (ek − ē), where ē and �k
are the mean and covariance of the residuals respectively
under normal conditions. If the population values of ē and
�k are known, the T2 statistic of the residuals follows a
χ2 distribution. In this numerical study, we use a station-
ary Kalman filter to estimate state vectors, and then we
use the steady-state covariance of the residuals, denoted as
�e, to construct a T2 control chart. These approximations
would make the T2 statistic deviate from the χ2 distribu-
tion slightly. However, because the setup of the T2 control
chart is not the focus of this article and for the sake of sim-
plicity, we will ignore the influence of these approximations
and compute the upper control limits still based on the χ2
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Table 1. ARL and EMM of mean change with different direction and strength

Magnitude = 3.87 Magnitude = 7.75 Magnitude = 15.49

Direction ARL EMM ARL EMM ARL EMM

[−3 −2 1 1] 310.260 0 315.740 0 315.690 0
[3 2 −1 1] 84.946 0.367 39 14.397 1.4696 2.472 5.8783
[1 −2 −3 1] 13.609 1.4696 2.527 5.8783 1.999 23.513
[1 1 3 −2] 13.334 1.513 2.437 6.0521 2.000 24.208
[3 −2 1 1] 9.181 2.1581 2.132 8.6323 1.998 34.529
[−3 1 −2 1] 8.677 2.1581 2.116 8.6323 2.000 34.529
[3 2 1 1] 5.858 2.5175 2.050 10.07 2.000 40.28
[1 1 −3 −2] 4.367 3.2213 2.016 12.885 1.999 51.541
[1 −1 3 2] 2.865 4.9886 2.000 19.954 1.999 79.818
[1 1 3 2] 2.560 5.6644 2.000 22.658 2.000 90.63

distribution. In this study, we choose α = 0.0033, and the
corresponding upper control limit is UCL = 13.70. The
in-control average run length is around 300.

The system given in model (17) is neither mean nor vari-
ance detectable, and consequently according to the defi-
nition of detectability, it can be concluded that some di-
rections of changes cannot be detected by any monitoring
schemes. To demonstrate this point, we arbitrarily change
the directions of the fault vectors but keep their mag-
nitudes constant, and use the average run length of the
control chart to evaluate the detection efficiency. Table 1
lists the average run length after 1000 simulations to de-
tect a fault with different magnitude and directions. In
Table 1, an index denoted as EMM is also used to charac-
terize the effective mean change magnitude. If we denote
q = C × (

∑n−1
i=0 Ai ) × B × (f − f0), then EMM can be ex-

pressed as: EMM(f) = qT�−1
e q, where f − f0 is the mean

shift vector, and �e is the estimated covariance matrix of
the residual in normal conditions. In fact, for a given sys-
tem and mean shift vector, this index is equivalent to the
statistical distance between f1 and f0. This quantity takes
into account both the magnitude and direction of the fault
vectors, and thus can fully represent the influence of the
changes. The numerical study indicates that the EMM in-
dex is closely related to the average run length: when EMM
is small, the ARL is large; when the EMM is large, the ARL
is small. Thus, the EMM value is a good indicator of the
sensitivity of the monitoring scheme. Clearly, if the system
is not detectable, then for a certain mean shift vector the
EMM index will be zero.

For illustration purposes, control charts for the detection
of two different mean shifts are illustrated in Fig. 2. In the
figure, the control chart can clearly detect the mean shift
to E(f2), whereas it is unable to detect the mean shift to
E(f1). This situation is exactly as we predict through mean
detectability analysis, and is consistent with the results in
the table.

The Average Run Length (ARL) of the T2 control chart
under different conditions of covariance changes is also

identified through simulation. The results are listed in
Table 2. The results are similar to those of the mean shift
cases, i.e., for a non-detectable system, the sensitivity of the
monitoring scheme is different for different change direc-
tions and for some particular directions, the monitoring
scheme fails to detect the change. In principle, we could
also develop an index to indicate the monitoring sensitiv-
ity for different change directions. However, because the
T2 chart was mainly developed for mean shift detection,
such an index of variance change detection is not needed
and is somewhat difficult to derive. Again, for illustration
purposes, control charts for the detection of two different
variance change conditions are illustrated in Fig. 3.

3.2. System design improvement based on detectability
analysis

When a system is not detectable, the detectability condition
of the system can be modified by redesigning the system
matrices.

We still use the system of Equation (17) as an example.
Since the row number of B̃ f,q is smaller than the column
number, the C matrix needs to be revised to increase the ob-
servability index. Actually, if the C matrix in Equation (17)

Table 2. ARL of variance change with different direction and
magnitude

Direction of
diag(� f − � f 0)

Magnitude =
0.625

Magnitude =
1.25

Magnitude =
1.875

[0.5 −0.25 −0.25 0.5] 311.07 308.76 302.16
[0.5 0.25 −0.25 0.5] 267.01 214.07 203.53
[0.5 0.25 0.25 0.5] 126.51 72.286 42.366
[0.25 0.5 0.5 0.25] 117.06 54.044 31.993
[−0.25 0.5 0.5 −0.25] 166.02 96.948 62.198
[0.25 0.25 0.5 0.5] 112.57 46.848 29.466
[0.25 −0.25 0.5 0.5] 116.62 57.747 33.769
[−0.25 −0.25 0.5 0.5] 138.63 70.808 39.737
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Fig. 2. Comparisons of the detection of two different mean shifts.

is revised to the following matrix, which only involves very
minor changes, the system can be made fully observable:

C =
⎡
⎣1 −1 0 0

1 −2 2 −2
2 −3 1 −2

⎤
⎦ . (20)

In this case, B̃ f,q = B f , and it can also be checked that
rank(B f ) = 4, therefore the system is both mean detectable
and variance detectable. In this example, we do not need
to further revise the B f matrix. We would also like to men-
tion that in most cases, the detectability condition can be
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Fig. 3. Comparison of the results of the detection of two different variance shifts.
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improved by slightly revising the system matrix because one
or two entry changes in the matrix are usually enough to
make the system detectable. To illustrate this point, we can
evaluate and compare the following three B̃ f,q matrices:

B̃ f 1 =

⎡
⎢⎢⎢⎣

1 0 2 1
1 1 3 2
0 1 2 1
0 0 2 1

⎤
⎥⎥⎥⎦ , B̃ f 2 =

⎡
⎢⎢⎢⎣

1 0 2 1
1 1 3 2
0 1 2 1
1 0 2 1

⎤
⎥⎥⎥⎦ ,

B̃ f 3 =

⎡
⎢⎢⎢⎣

1 0 2 1
1 1 3 2
0 1 1 1
1 0 2 1

⎤
⎥⎥⎥⎦ . (21)

In the first case, B̃ f 1 is of full rank, so the system is both
mean and variance detectable; in the second case, B̃ f 2 is
not full rank, so it is not mean detectable. However, we
could not find subsets of columns satisfying conditions
C1 to C3. Therefore, the system is variance detectable. In
the third case, B̃ f 3 is still rank-deficient. Furthermore, it
can be shown that the third and fourth columns of B̃ f 3 fall
into the space spanned by the first and second columns, and
these two subsets satisfy conditions C1 to C3. Therefore,
the system with B̃ f 3 is neither mean nor variance detectable.
We can then follow the design guidelines in Section 2.3 to
revise the B̃ f,q matrix to make the system detectable.

These examples demonstrate that although these B̃ f,q
matrices have very similar structures with only one or two
entries being different, the detectability results are quite
different. This provides us with the possibility to change
the detectability condition by only slightly modifying the
system matrices.

4. Concluding remarks and future work

This paper investigates detectability issues in multivariate
dynamic systems. In this paper, process faults are repre-
sented by a random vector input to the dynamic system
with possible mean and variance changes. The relationship
between the intrinsic detectability and system structures is
investigated and criteria for checking detectability are es-
tablished. The major results of this paper are summarized
into two lemmas and one corollary. These results can be
used for system detectability analysis and provide guide-
lines for system design.

There are still some open issues in the proposed meth-
ods. In our detectability definition, we have no restriction
on the change types of the faults, which can be step change
or drifting change or others. However, for easy checking
of the detectability criteria we made the assumption that
all the changes are step changes. Although the conditions
are still applicable to linear drifting changes, they cannot
handle more sophisticated changes. It would therefore be of

interest to consider more general cases. In our analysis, the
system parameters are also assumed to be precisely known.
If the system model is driven from physical analysis, this
might be true. However, in a real application where it is
unlikely that we can obtain a physical process model, the
robustness of the detectability analysis needs further atten-
tion. Furthermore, although the detectability analysis can
identify which vectors can be detected, it does not provide a
continuous indicator of how sensitive the detection scheme
is for a specific process change. Therefore, it is desirable
to study sensitivity issues in change detection, including
both mean shift and variance shift. However, unlike the
detectability study, the sensitivity will have a close relation-
ship with the particular change detection algorithms. We
will concentrate on these open issues, from both theoretical
and practical perspectives, in our future studies.
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