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A multistage system refers to a system consisting of multiple components, stations or stages required to finish the final product or
service. Multistage systems are very common in practice and include a variety of modern manufacturing and service systems. In
most cases, the quality of the final product or service produced by a multistage system is determined by complex interactions among
multiple stages—the quality characteristics at one stage are not only influenced by local variations at that stage, but also by variations
propagated from upstream stages. Multistage systems present significant challenges, yet also opportunities for quality engineering
research. The purpose of this paper is to provide a brief survey of emerging methodologies for tackling various issues in quality
control and improvement for multistage systems including modeling, analysis, monitoring, diagnosis, control, inspection and design
optimization.
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1. The Characteristics of Multistage Systems

A multistage system refers to a system consisting of mul-
tiple components, stations or stages required to finish the
final product or service. Multistage systems are very com-
mon in practice: (i) almost all modern manufacturing pro-
cesses (e.g., assembly, machining, semiconductor fabrica-
tion, pharmaceutical manufacturing) fit this category; (ii)
information systems consisting of multiple interconnected
hosts to provide quick response to service requests also fit
in this category; and (iii) service processes involving mul-
tiple processing steps to fulfill a customer’s needs also fit
in this category. For example, a plastic surgery operation,
or a microvascular anastomosis procedure, involves about
15 surgical tasks (or stages), including positioning donor
tissue, attaching the donor vein to the host, etc. Each task is
completed by applying a set of surgical techniques. The per-
formance quality of each task is measured by task outcome
variables, which collectively impact patient outcomes.

Certain common characteristics make such systems in-
herently complex, including the following.

1. Multiple stages and hybrid structures with mixed se-
quential or/and parallel configurations.
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2. Feedback/feedforward loops that arise because outputs
from one stage are the inputs to other stages, so the out-
comes from one stage are not only influenced by local
variations at that stage, but also by the variations prop-
agated from upstream stages, with the final outcome
being an accumulation (or stack up) of variations from
all stages.

3. Mixed data types and multiscale variables that arise from
multiple processes or/and performance variables at each
stage, which usually have different data types and differ-
ent scales.

4. Collective and stochastic performance, i.e., the ultimate
performance of the overall system depends upon the ac-
cumulated performance of individual stages in the sys-
tem.

An illustrative diagram of a multistage system is shown
in Fig. 1.

Figure 2 shows a manufacturing process for a dielectric
electroluminescent Flat Panel Display (FPD). This pro-
cess consists of various microfabrication operations, such
as photolithography, sputtering, screen printing and laser
machining (Madou, 2002). At each major station, there
are five or six substations (not shown in the figure) at which
tasks such as firing, curing, cleaning and inspection are
performed. As a result, more than 40 high-precision steps
are linked together to finish the final product. The layer-on-
layer structure of the process means that the interactions
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Fig. 1. A diagram of a multistage system.

among different stations are even stronger than those found
in macro processes (Shindo et al., 1998). For example, the
evenness of each layer directly affects the uniformity of
brightness of the display and thus is a critical quality char-
acteristic; unevenness of one layer clearly affects subse-
quent layers. Thus, for yield improvement, the interactions
among different stages must be considered.

Another typical example of a multistage system is the
supply chain system, where the product is moved through
multiple tiers of suppliers and eventually to the end cus-
tomers. A well-known phenomenon, called the “bullwhip
effect” in forecast-driven supply chains, is simply the re-
sult of the impact of stage-wise interactions on the sys-
tem performance (Forrester, 1961). The concept of multi-
stage systems is also relevant to chemical processes (Undey
and Cinar, 2002), many service systems (Bolton and Drew,
1991), medical diagnosis (Chinchilli, 1983) and manage-
ment systems (Beswick and Cravens, 1977). Many techni-
cal issues in system design, optimization and performance
monitoring and evaluation can be investigated under the
framework of multistage systems. For instance, extensive

research exists on optimal scheduling and control of mul-
tistage production systems and supply chains, e.g., Liu
et al. (2004), Sawik (1987), Gunasekaran et al. (1998) and
Fenner et al. (2005). In order to limit the scope of this paper,
we focus on the review of the quality control and improve-
ment methodologies for multistage systems, particularly,
multistage manufacturing systems.

The complexity of multistage systems presents significant
challenges for effective quality control and improvement.
Recent technological advances, on the other hand, provide
us with great opportunities to develop new methodologies
to understand and rise above these complexities. Due to the
rapid development of information and sensing technolo-
gies, an abundance of data is now readily available in many
real-world systems. In discrete manufacturing processes, to-
tal inspection at each intermediate operation and very high
sampling rates are no longer rare in practice. For example,
in automobile body assembly processes, 100% dimensional
inspection has been achieved through in-line optical coor-
dinate measurement machines (Ceglarek and Shi, 1995).
In-line optical scanning systems are also widely available

Fig. 2. A microfabrication process for a FPB.
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Fig. 3. The framework of multistage systems research.

in microfabrication processes (Raman et al., 1998). This
profusion of process/product measurement data provides
opportunities for effective quality control. Through the full
exploitation of the data-rich environment, many new qual-
ity control and improvement methodologies have been de-
veloped for multistage systems in recent years.

2. Quality control and improvement for multistage
systems: State of the art

A basic framework for quality control research in multi-
stage systems is illustrated in Fig. 3. Most of the recently
developed quality control and improvement methodologies
for multistage systems are built upon some sort of quanti-
tative modeling of the system and can be classified into: (i)
monitoring and diagnosis; and (ii) quality-oriented design
optimization. In the following, we provide a brief review
of each of these methodologies. A recent monograph (Shi,
2007) provides detailed descriptions of existing research on
quality control for multistage manufacturing processes.

2.1. Multistage system modeling for quality control

The most challenging aspect of quality control for com-
plicated multistage systems is process error accumulation
and propagation along a series of stages. Thus, for quality
improvement purposes, it is critical to establish a mathe-
matical description of the interactions between process er-
rors and the quality of final product in a multistage system.
The current profusion of process/product information has
presented great opportunities and indeed stimulated the
development of modeling efforts for multistage systems.

Recent quantitative modeling methodologies for multi-
stage systems can be roughly classified as analytical (em-
ploying physical models from engineering analyses) or data-

driven (employing statistical models using only process
measurement data) methods.

Analytical methods utilize off-line analysis of the system
based on first principles, i.e., fundamental physical laws.
The most popular physical model used for quality control
of multistage systems is the state space model as shown in
Fig. 4, first proposed in Jin and Shi (1999). In this method,
the key quality characteristics of the product (e.g., the di-
mensional quality) at stage k are represented by state vector
xk and the process error sources (e.g., the fixture locator er-
rors) at station k are included as inputs uk. The unmodeled
errors are represented by a random vector wk. The vector vk
is the sensor noise. The state space model for a multistage
system is expressed as:

xk = Ak−1xk−1 + Bkuk + wk and yk = Ckxk + vk, (1)

where Ak−1xk−1 represents the transformation of product
quality deviations from station k − 1 to station k, Bkuk rep-
resents product deviations resulting from process errors at
stage k and Ck maps product quality states to quality mea-
surements. If the quality characteristics are directly mea-
sured, then Ck is simply an identity matrix. Matrices Ak, Bk
and Ck are determined through the first principle analysis
of the system. This stage-indexed state space model had
been used to model variation propagation in various multi-
station manufacturing processes, e.g., rigid-part assembly
processes (Jin and Shi, 1999; Mantripragada and Whitney,
1999; Ding et al., 2000; Huang, Lin, Bezdecny, Kong, and
Ceglarek, 2007; Huang, Lin, Kong and Ceglarek, 2007;
Liu, Jin and Shi, 2009), compliant-part assembly pro-
cesses (Camelio et al., 2003; Xie et al., 2007), machining
processes (Huang et al., 2000; Zhou, Huang, and Shi, 2003;
Djurdjanovic and Ni, 2001; Loose et al., 2007, 2009) and
sheet stretch forming processes (Suri and Otto, 1999).

The state space model is popular because it offers sev-
eral advantageous features. First, the complicated stage-
wise interaction is handled automatically in this model
through the state transition. To construct this model, we
only need to study locally the relationship among xk−1, xk
and uk at each individual stage k. Hence, the large body
of knowledge that may be available about each single-stage
operation can be readily reused in the model construction.
Furthermore, due to its chain-like structure, the state space
model is very flexible. We can easily choose any critical
segment of the process to model and analyze. The second
advantage of this model is its linear structure. Although

Fig. 4. Diagram of a multistage process.
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the relationships among the key process and product fac-
tors are non-linear in general, those relationships can often
be linearized around a nominal working status (Ren et al.,
2006). A linear state space model can significantly reduce
the complexity of the subsequent analysis and synthesis. In-
deed, after some straightforward manipulations, the state
space models can be transformed to the following generic
linear form:

y = �f + ε, (2)

where y is a vector consisting of product quality character-
istics, � is a constant coefficient matrix determined by the
process/product design, f is a vector representing the pro-
cess error sources and ε includes measurement noise and
unmodeled system variation.

The physical models are derived from first principles
that characterize the process. Such models can usually pro-
vide useful insights on how the sources of variation affect
product quality. However, the physics of the process needs
to be thoroughly studied to construct the process model.
Different from physical models, data-driven models focus
on investigating patterns in the massive historical quality
database to estimate the coefficient matrix � and thus do
not require comprehensive a priori knowledge of the pro-
cess. Some authors have employed a data-driven AR(1)
model to describe the variation transmission in both mul-
tistage assembly and machining processes (Agrawal et al.,
1999; Lawless et al., 1999). The parameters of their AR(1)
model are estimated based on product measurements. Fac-
tor analysis (Apley and Shi, 2001; Liu et al., 2008) and
blind source separation techniques (Apley and Lee, 2003;
Shan and Apley, 2008) have been used to estimate �. These
methods rely on assumptions of a specific quantitative or
qualitative structure of the coefficient matrix � or certain
conditions on the autocorrelation or distribution of the
variation sources and process noise. Another data-driven
modeling technique is based on the analysis of the linear
space spanned by the eigenvectors of the covariance matrix
of the multivariate quality measurements (Krzanoski, 1979;
Johnson and Wichern, 2002; Jin and Zhou, 2006a, 2006b).
This technique builds upon the fact that given model (2), the
eigenvectors of y possess some specific relationships with
the matrix �. The aforementioned methods can effectively
identify the structure of the aggregated � matrix based
on the measurements of quality characteristics. However,
the stage-wise interactions cannot be identified. Recently,
data-driven techniques were proposed to statistically infer
the direct interactions among different stages (Zeng and
Zhou, 2007; Li and Shi, 2007). These techniques identify
the underlying interactions among stages through the in-
tegration of advanced statistical techniques (e.g., graphical
models (Zeng and Zhou, 2007) and causal Bayesian net-
work models (Li and Shi, 2007)) and engineering insights
regarding manufacturing processes.

The aforementioned mathematical models provide quan-
titative foundations for quality analysis, diagnosis and con-

trol in complicated multistage processes. Building upon
these models, various quality control and improvement
methodologies have been developed, as we describe in the
next section.

2.2. Monitoring, diagnosis and control for multistage
systems

2.2.1. Statistical process monitoring for multistage systems
In quality control and improvement, it is critical to monitor
the process to detect process changes and further diagnose
the process to determine the root causes of the changes.

Statistical Process Control (SPC) is the main technique
used in practice for quality and process monitoring. How-
ever, most conventional SPC techniques treat the multistage
system as a whole and lack the capability to discriminate
among changes at different stages (see Montgomery and
Woodall (1997) for reviews). A major challenge in applying
these techniques to a multistage system is the high false
alarm rate, i.e., a change is detected at a stage, but the
change is actually due to a change at preceding stages.
Thus, a monitoring technique should take the stage-wise
interactions into consideration to reduce the false alarm
rate. Existing techniques include regression control charts
(Mandel, 1969) and cause-selecting control charts (Zhang,
1985; Wade and Woodall, 1993), where the outgoing quality
is monitored after adjustment for the effect of the incom-
ing quality. Hawkins (1991, 1993) proposed an extension
of this methodology and studied the design of related pro-
cedures for monitoring correlated quality characteristics
based on regression adjustment in cascading processes. He
suggested that every quality characteristic should be moni-
tored by a corresponding regression-adjusted chart, which
is based on the (standardized) residuals, Zj = Q j − Q̂ j ,
j = 1. . . . .q, called regression-adjusted variables. The resid-
uals are the results when the observation of the quality
characteristic at the j th stage, denoted as Q j , is regressed
against the measurements of the quality characteristics of
all its preceding stages. In this way, the stage-wise interac-
tions are adjusted and if Z j is out of control, it means that
some faults occurred on the j th stage. The idea of regression
adjustment is widely accepted as a good way to deal with
multistage quality control problems and has become the
basis for some further studies. For example, Zantek et al.
(2002) measured the impact of each stage’s performance on
variations in intermediate and final product quality. This
idea has also been extended to multivariate cases (Hauck
et al., 1999). The impact of measurement errors on the per-
formance of regression-adjusted monitoring also has been
investigated (Zeng and Zhou, 2008). Besides regression-
adjusted methods, some multivariate SPC techniques
(e.g., Nomikos and MacGregor (1995) and Kourti and
MacGregor (1996)) such as principal components anal-
ysis and partial least squares are able to handle large,
ill-conditioned measurement spaces and thus have the
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potential to be applied to multistage system monitoring
as well. Most recently, some specific SPC techniques have
been developed to exploit the detailed structure of mul-
tistage systems to achieve high detection power and di-
agnostic capability. For example, an exponential weighted
moving average scheme has been proposed as a monitoring
method for multistage systems (Xiang and Tsung, 2008;
Zou and Tsung, 2008). Methodologies for identifying in-
control samples and adjusting the detection power for mul-
tistage systems have been reported as well (Zou et al., 2008;
Li and Tsung, 2009).

2.2.2. Root cause identification for multistage systems
After a process change is detected through SPC techniques,
it is critical to determine the root causes and identify ap-
propriate corrective actions to restore the system to its nor-
mal condition. However, SPC methods generally do not
provide diagnostic capability—the diagnosis of root causes
is left to human operators. Stimulated by the availability
of measurement data and the development of modeling
techniques for multistage systems, significant progress has
been made toward intelligent root cause diagnostics. These
methodologies can be roughly classified into two categories:
(i) statistical-estimation-based methods; and (ii) pattern-
matching-based methods. Both of these methods are based
on mathematical models that link the system error and the
system quality measurements as given in Equations (1) and
(2).

In estimation-based methods, model (2) is treated as a
linear mixed model. The variances of process errors f are
the variance components to be estimated in this mixed
model (Searle et al., 1992; McCulloch and Searle, 2001).
One method uses ordinary least squares to estimate the
random input f and then calculates its variance as if the
estimates were directly measured (Apley and Shi, 1998;
Chang and Gossard, 1998). Zhou et al. (2004) used a max-
imum likelihood estimator and also provided confidence
intervals for the estimated variance of f. Ding, Zhou and
Chen (2005) compared different variance estimation meth-
ods and provided guidelines for method selection under
different circumstances.

The basic idea underlying the pattern-matching-based
method is as follows. First, based on the model, we can ob-
tain signatures of potential errors. Meanwhile, symptoms of
the present error can be extracted from measurement data.
Finally, the present error can be identified if there is a match
between the patterns of the error symptom and the error
signature. In most available pattern matching techniques
(e.g., Ceglarek and Shi (1996), Rong et al. (2000), Ding, Jin,
Ceglarek and Shi (2002a) and Li et al. (2007)), the columns
of � are treated as the signatures of corresponding errors
and it is assumed that during the data collection period,
only one error occurs in the system. In these approaches,
the eigenvector associated with the largest eigenvalue of Sy
(the sample covariance matrix of y) is calculated and com-

pared with the columns of �. If there is a match, then we
can conclude that the corresponding error occurred in the
system. These methods are extended to cases with multi-
ple errors in Jin and Zhou (2006a), Li and Zhou (2006)
and Kong et al. (2008), and are also implicitly embedded
in the rule-based fault isolation approach (Ceglarek et al.,
1994). Some subtle aspects of the pattern matching method
such as construction and integration of signatures in the
case of multiple errors have been investigated as well (Jin
and Zhou, 2006b; Zeng et al., 2008). Most existing pat-
tern matching methods only consider the linear patterns.
However, a pattern matching method based on non-linear
relational measurements was also reported recently (Loose
et al., 2008).

A question that is common to both methods mentioned
above concerns system diagnosability: does the system mea-
surement data contain sufficient information to enable us
to differentiate system errors at different stages? The con-
cept of diagnosability of multistage system was initially
proposed in Ding, Shi and Ceglarek (2002). The issue of di-
agnosability has been systematically investigated under the
framework of linear mixed models. Quantitative criteria for
checking diagnosability and the useful concept of a minimal
diagnosable class have been proposed (Zhou, Ding, Chen
and Shi, 2003). Researchers have found that system diag-
nosability is closely related to the structure of the � matrix
in Equation (2) and the structure of a quadratic transfor-
mation of �. Other easy-to-use diagnosability checking cri-
teria were also recently developed (Ding et al., 2004; Zhang
et al., 2007; Chen and Zhou, 2009). Apley and Ding further
developed unified formulations and solution procedures to
transform various forms of singular, non-diagnosable as-
sembly systems into full-rank, diagnosable systems (Apley
and Ding, 2005).

The statistical-estimation-based method and the pattern-
matching-based method have different strengths. From a
practical point of view, the pattern matching method is very
intuitive and possesses a clear geometric interpretation,
which may help practitioners understand and eliminate
the variation source. Thus, the pattern matching method
is more readily accepted by practitioners than are statisti-
cal estimation methods. On the other hand, using statistical
estimation methods, people can evaluate the performance
of statistical tests quantitatively because the statistics used
in the tests are tractable.

As an extension of diagnosis methodologies, some re-
searchers developed a process adjustment technique to re-
duce the variation in a multistage system. The basic idea is
to control the product quality through on-line adjustment
of certain process parameters such as the fixture locations.
The control algorithms are based on an understanding
of the process operation derived from the multistage sys-
tem model and are often in feedforward form. These tech-
niques have been developed for both assembly (Izquierdo
et al., 2007) and machining processes (Djurdjanovic and
Ni, 2007).
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2.3. Quality-oriented design optimization

Multistage systems provide significant opportunities for the
establishment of new methodologies for design optimiza-
tion with the goal of quality improvement and reduction of
inspection cost. System design is a very broad field and the
design problems can be classified into two basic categories:
(i) quality inspection strategy design; and (ii) process pa-
rameter design. The goal of designing a quality inspection
strategy is to optimize the allocation of inspection resources
and determine the optimal parameters for the quality assur-
ance program, while the role of process parameter design
is to adjust the process design itself to improve the robust-
ness and accuracy of the process itself in order to produce
a better quality product. These two design problems are
essentially engineering optimization problems that differ
from one another in their objective functions. Multistage
systems pose significant challenges and, at the same time,
opportunities for solving both these design problems.

In a recent survey (Mandroli et al., 2006), inspec-
tion strategy design is further classified into two cate-
gories: inspection-oriented quality assurance strategies and
diagnosis-oriented sensor distribution strategies. The first
focuses on minimizing the total system cost for quality ap-
praisal by adjusting the inspection parameters (e.g., frac-
tion of items to be inspected, number of repetitions in in-
spection, protocols for dealing with non-conforming items,
etc.) and optimally allocating inspection capabilities to var-
ious stages in the system. These strategies are called “qual-
ity assurance” strategies because they ensure that the cus-
tomer will receive high-quality product. However, these
strategies usually do not provide feedback for improve-
ment of the process itself. On the other hand, the second
category, sensor distribution strategies, focuses on optimal
sensor distribution in the system with the goals of minimiz-
ing cost and maximizing the diagnosability of the system.
Clearly, these strategies focus on quality control and contin-
uous improvement of the process itself. Extensive research
exists in both of the aforementioned areas. However, since
an excellent survey on these strategies appears in Mandroli
et al. (2006), we do not review these streams of research
here.

The use of a quantitative framework for modeling vari-
ation in multistage systems enables us to optimize process
parameters for quality control and improvement. For ex-
ample, given the key process characteristics (uk), we can
obtain the mean and the variance of the measurable key
product quality characteristics (yk) based on an analysis of
the multistage model (1). The results of this analysis can
be immediately used to study the sensitivity of yk to uk.
We can identify process factors that have large impacts on
product quality so that we can focus on those factors when
trying to improve quality. Indeed, such a sensitivity study
for multistage manufacturing processes has been reported
(Ding, Ceglarek and Shi, 2002b). Based on this sensitivity
study, two approaches for quality improvement via adjust-

ment of the design can be pursued: (i) optimal allocation
of tolerances for the uk values; and (ii) changing the struc-
ture or parameters of the process (i.e., change the matrix
� in model (2)) to reduce the sensitivity or “gain” of the
system. Mathematically, both problems can be formulated
as constrained optimization problems given by

CT(T∗) = min
T

CT(T) subject to �(T) < � (3)

where T is the vector of process parameters we are trying to
adjust, �(T) represents the production cost associated with
the selected set of process parameters T, CT is a given mea-
sure or index of the sensitivity of product quality deviation
with respect to process parameters T and � is a specified
cost level. By solving this problem, we can minimize prod-
uct quality variation under a cost constraint. Under certain
conditions, a quadratic cost function and a simple linear
function CT(T) can be used in this design optimization
problem. This will lead to a closed-form solution to this
problem. Then, physical insights and guidelines for process
improvement can be realized. For a multistage system, the
critical challenge in solving the above optimization problem
is the high dimensionality of T, i.e., for a complicated mul-
tistage system, there are usually a large number of process
parameters to adjust. A dimension reduction technique is
often needed before solving model (3). In the literature,
both approaches to design improvement have been investi-
gated. The optimal tolerance allocation problem is studied
in Huang and Ceglarek (2004), Ding, Jin, Ceglarek and
Shi (2005), Chen et al. (2006), Phoomboplab and Ceglarek
(2007) and Huang et al. (2009), while the process struc-
ture/parameter optimization is investigated in Kim and
Ding (2004, 2005), Phoomboplab and Ceglarek (2008) and
Liu, Shi and Hu (2009). As a specific example of the latter,
an interesting data-mining-guided method has been pro-
posed to handle the high dimensionality issue (Kim and
Ding, 2005). Efforts also have been made to integrate tool-
ing reliability and product quality in multistage systems in
the so-called “Quality and Reliability Chain” model (Chen
and Jin, 2005) for system design and evaluation (Chen
et al., 2004).

From the above review, we can see that vast amounts
of information from product design, process design, in-
process sensing and product quality inspection can be in-
tegrated under a unified quantitative framework for mul-
tistage systems. This integrated framework lays a founda-
tion for developing advanced process monitoring, diagno-
sis and control methodologies by using systems theory and
advanced statistics and indeed has spurred an impressive
amount of research work in recent years.

3. Future trends

The complexity of multistage systems requires a holistic
system-level approach for effective quality control. Thus,
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the essence of the multistage system framework is the
fusion of theories, tools and techniques from multiple
disciplines such as industrial and systems engineering,
statistics, mechanical engineering and electrical engi-
neering to achieve full utilization of the wide spectrum
of readily available information. Indeed, this has been
an ever-growing trend in many academic disciplines.
Computational power and the data availability have
reached unprecedented levels in recent years, thanks to the
information revolution. New methods to exploit these op-
portunities to establish transformative methodologies for
solving engineering problems will be at the center stage of
engineering research in the future. Research on multistage
systems will follow the same trend. Specifically, we believe
the following research areas in multistage systems will grow
significantly.

First, analysis of complex systems using modeling based
on first principles is often intractable. Consequently, data-
driven modeling and knowledge discovery for multistage
systems will become more popular. The data may come
from system sensors or the output of a high-fidelity numer-
ical simulation model. Data mining and surrogate model-
ing for multistage systems will become very active research
areas.

Second, system design is always a critical issue in prod-
uct and service realization. For many years, researchers
and practitioners have advocated the integration of prod-
uct design with manufacturing systems design. A new term,
“Design for X” was even coined for this effort. The re-
search on quality control and improvement for multistage
systems will lead to a quantitative foundation for inte-
grated product and process design. Some existing work
on multistage systems, e.g., the work on process-oriented
tolerancing, has demonstrated this capability. We expect
that more research will be conducted along this line.
The key challenges in integrated design such as design
space characterization and solution of high-dimensional
design optimization problems will be conquered in the near
future.

Third, as mentioned in the previous sections, quantita-
tive models of quality in multistage systems can be applied
to a very broad range of systems, although existing research
mostly focuses on discrete parts manufacturing processes.
The success of the framework for multistage systems in
quality control of multistage manufacturing systems will
certainly stimulate the extension of this methodology to
other systems and fields. For example, the monitoring and
diagnosis of abnormalities in the throughput, cycle time
and lead time of a multistage production system will be
very promising application areas for the multistage sys-
tems framework. Most service systems such as healthcare
clinics and hospitals and transportation systems are inher-
ently multistage. Quality control and improvement for such
systems will definitely benefit from the framework for mul-
tistage systems.
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