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Imbalance Estimation for
Speed-Varying Rigid Rotors Using
Time-Varying Observer
Rigid rotor dynamic model is widely used to model rotating machinery. In this pape
speed-varying transient rigid rotor model is developed in the state space form. The
of this model are augmented to include imbalance forces and moments. A time-va
observer can then be designed for the augmented system by using canonical trans
tion. After obtaining an estimation of the imbalance forces and moments as the sta
the augmented system, the estimated imbalance can be directly calculated. This esti
method can be used in the active vibration control or active balancing schemes for a
rotor. @DOI: 10.1115/1.1409935#
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1 Introduction
Rotating machines, including machining tools, industrial turb

machinery, and aircraft gas turbine engines, are commonly use
industry. Vibration caused by mass imbalance is an important
tor limiting the performance and fatigue life of a rotating syste
There are two major categories of control methods for the s
pression of excessive imbalance-induced vibration. The first
egory is balancing. This method tries to eliminate the rotor imb
ance. Off-line balancing methods~Wowk @1#! are widely used in
practice, but they are usually time-consuming and cannot be u
if the distribution of imbalance changes during operation. So
researchers~Gosiewski@2,3#, Van De Vegte and Lake@4#, Van De
Vegte@5#! tried to use some kind of mass redistribution device
actively balance the rotating systems during operation. T
method directly suppresses the imbalance-induced vibration o
force transmitted to the base by using lateral force actuators
as magnetic bearings~Knospe et al.@6#, Lum et al. @7#, Herzog
et al. @8#!. All of the above research concentrated on the cons
spin-speed case: the so-called ‘‘steady-state’’ case. Because o
constant spin-speed assumption, the influence coefficient me
is used to model the rotor system. The whole rotor dynamics
lumped into constants: the influence coefficients. The imbalanc
embedded in the influence coefficients. The estimation of the
balance, which is very important in both the balancing and ac
vibration control schemes, is fulfilled by the estimation of infl
ence coefficients.

An alternative way to estimate the system imbalance is p
vided by Reinig and Desrochers@9# and Zhu et al.@10#. In their
methods, the states of the rotor dynamic system are augme
to include the imbalance forces. An observer is then used to
mate the augmented states set. Again, their methods only
with the constant spin-speed case. Hence, the enlarged system
time invariant linear system. The traditional Luenberger obser
~Luenberger@11#! can be used to estimate the imbalance force

Besides the constant rotating speed case, the imbalance v
tion control needs to be completed during speed-varying trans
time to save time and improve performance in some other ca
For example, a machining tool needs to be engaged in cuttin
soon as the spindle goes into steady state in high-speed ma
ing. The vibration control has to be active during the accelera
period to reduce the effect on the cutting cycle time. Althou
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several researchers~Knospe et al.@12#! have pointed out how to
conduct imbalance vibration control during the startup through
critical speed, their basic method is to interpolate the influe
coefficients between different speeds. This is a ‘‘quasi-stea
strategy because the requirement of a ‘‘steady-state’’ respons
inherited in the influence coefficient method. Very little resear
work has been reported on the balancing and active control for
rotor system with fast acceleration and low damping ratio. Zh
and Shi @13# found an analytical expression of the imbalanc
induced vibration of a rotor system during acceleration. From t
analytical expression, a significant suddenly occurring free vib
tion component can be found in the imbalance-induced vibra
if the acceleration is high and the damping is low. The ‘‘qua
steady-state’’ assumption does not hold under these conditi
Zhou and Shi@14# also proposed a real-time active balanci
scheme for fast acceleration case. That scheme is based o
least squares estimation of the system imbalance of the rotor
tem. In that scheme, a mass redistribution active balancing de
is required to excite the system dynamics and hence make
estimation converge fast.

In this paper, a time-varying observer is developed to estim
the imbalance force and the imbalance itself of a rigid rotor s
tem during acceleration. This formulation does not require stea
state response because the rotor is modeled by dynamic diffe
tial equations. Moreover, this formulation assumes that
dynamic parameters of rotor system are known and hence no e
excitation is required. This result can be used in both active b
ancing and direct vibration control schemes for rigid rotors.

This paper consists of five sections. In Section 2, a spe
varying transient dynamic model of a rigid rotor will be presente
It is formulated in a form suitable for imbalance force estimatio
This dynamic model is a time-varying linear model due to t
gyroscopic effect and the inclusion of the imbalance forces in
states. The time-varying observer design problem is addresse
Section 3. Section 4 gives some simulation results to show
effectiveness of this imbalance estimation scheme. Conclus
are given in the last section.

2 Speed Varying Dynamic Model of Rigid Rotors
The dynamics of rigid rotor are very important because

rigid rotor model has been the model used for many pract
rotors. The geometric setup is shown in Fig. 1.

The basic assumptions used in the modeling procedure are

~a! The rotor is rigid with circular cross section and the imba
ance is represented as a concentrated mass on the shaft. Any
and dynamic imbalance can be represented by the mass an
position of this concentrated imbalance.

he

sso-
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~b! The bearings are modeled as a set of linear springs
dampers in two orthogonal directions with the same spring ra
and damping coefficients. The bearings locate at each end o
shaft and the mass center of the rotor is located at the midp
between the two bearings. This assumption simplifies the dyna
model because the translational motion and the conical motio
the rotor are uncoupled under this assumption. The translatio
motion in the two orthogonal directions~X and Z! is also un-
coupled under this assumption. This simplified rigid rotor mod
is used in the following derivation, but the extension to a mo
general rigid rotor model is quite straightforward.

Fig. 1 The geometric setup of rigid rotor model
638 Õ Vol. 123, DECEMBER 2001
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~c! The angular acceleration of the rotational motion is a
sumed a known constant. The linear acceleration speed profi
common for machining spindles. We also assume that the rota
angle, speed, and acceleration are known. They can be easily
sured by attaching an encoder to the spindle.

~d! The lateral vibration motions are assumed small to simp
the dynamics.

Two coordinate systems are used in the derivation: the bo
fixed coordinateoxyz and the inertial coordinate OXYZ. The
body-fixed y-axis is the rotating axis of the shaft andx- and
z- axes are defined by the other two principal inertia axes
the rotor. The origin ofxyz is selected as the geometric center
the shaft. TheXYZcoordinate system is the stationary coordina
and coincides with thexyz coordinate system when the body
at rest.

The elastic and damping forces provided by the bearings a

H Fk522k@RX RZ#T, M k52kL2/2@u c#T/2

Fc522c@ṘX ṘZ#T, M c52cL2/2@ u̇ ċ#T/2
. (1)

The equation of motion can be obtained by using Newton’s l
for a rigid body
l for
5
I tü1cL2u̇/21kL2u/22I pċḟ2I pcf̈5mud~ḟ2 sin~a2f!1f̈ cos~a2f!!uy

I tc̈1cL2ċ/21kL2c/21I pḟu̇1I pf̈u5mud~2ḟ2 cos~a2f!1f̈ sin~a2f!!uy

mR̈X12cṘX12kRX52mud~f̈ sin~a2f!2ḟ2 cos~a2f!!

mR̈Z12cṘZ12kRZ5mud~ḟ2 sin~a2f!1f̈ cos~a2f!!

. (2)

Using the substitution ofux5d cosa anduz5d sina and rewriting Eq.~2! into state space form, we can get the state space mode
rigid rotor,

(3)
lance
where f 15f̈ cosf2ḟ2 sinf, f 25f̈ sinf1ḟ2 cosf, are known
functions of time.

Observing thatf 2 and f 1 are the real and imaginary parts of
complex numberF5(ḟ21 i f̈)e2 if ~actually, F52d2(e2 if)/
dt2! and
a

d

dt S F

ḞD 5S 0 1

23i f̈ 2ḟ i
D S F

ḞD , (4)

we can augment the state space model and make the imba
force be states. In fact,
Transactions of the ASME
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muuxuy

I t

muuyuz

I t

muuyuz

I t

2muuxuy

I t

4 F f 1

f 2
G53

ReH S muux

m
1

muuz

m
i DFJ

ImH S muux

m
1

muuz

m
i DFJ

ReH S muuyuz

I t
1

2muuxuy

I t
i DFJ

ImH S muuyuz

I t
1

2muuxuy

I t
i DFJ 4

5F Re$F18%
Im$F18%
Re$F28%
Im$F28%

G . (5)

Re$•% and Im$•% denote the real and imaginary part of a compl
number.F18 and F28 are F multiplied by complex constants a
defined in Eq.~5!. It is obvious thatF18 andF28 also satisfy Eq.~4!.
Equation~4! can be rewritten in real domain as

(6)

where f r and f i are the real and imaginary part ofF. Combining
Eq. ~3! through Eq.~6!, the augmented state space model of
rigid rotor is

d

dt
x5S A~ t ! Y1 Y2

0 A1~ t ! 0

0 0 A1~ t !
D x,

(7)
y5@RX RZ u c#T

where x5@RX RZ u c ṘX ṘZ u̇ ċ f 1r f 1i ḟ 1r ḟ 1i f 2r f 2i ḟ 2r ḟ 2i #
T,

f 1r , f 1i and f 2r , f 2i are the real and imaginary part ofF18 andF28 ,
respectively.A(t) andA1(t) are the matrices shown in Eq.~3! and
Eq. ~6!. Y1 andY2 are defined as

Y153
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

4 Y253
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

4 .

Remarks:

• The system imbalancemu , ux , uy , and uz are not shown
explicitly in Eq. ~7!. They are implicitly included in the model a
the initial conditions of@ f 1r f 1i f 2r f 2i #.

• Since this paper concentrates on the imbalance estima
problem, the control input~either lateral forces or balance
induced forces! is not included in the model. It is straightforwar
to include these forces.

• The output of the model is the displacement of the m
center and the swinging angle of the rotor aboutX andZ direction.
Journal of Dynamic Systems, Measurement, and Control
x
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-
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Since the rotor is rigid, these can be obtained by measuring
motion of any two non-coplanar points on the rotor.

• The model is a linear time variant model because the rota
speed is included in the dynamic matricesA andA1 .

Using this augmented model, the imbalance estimation prob
is transformed to a state estimation problem. A linear obser
can give the estimation of states from incomplete sta
measurements.

3 Time Varying Observer Design
It is well known that the states of a time-invariant linear syste

can be reconstructed by a linear time-invariant observer. An e
mous body of literature has been published on this topic. An
cellent review can be found in O’Reilly@15#. Compared to the
time-invariant observers, relatively few papers~Wolovich @16#,
Yuksel and Bongiorno@17#, Nguyen and Lee@18#, Shafai and
Carroll @19#! deal with observers for time-varying systems, su
as the dynamic system of Eq.~7!. In this paper, the design of time
varying observers follows the basic steps in Nguyen and Lee@18#.

The essential results of their work are that:~1! a linear time-
varying system can be transformed into an observability canon
form under certain conditions;~2! the states of the canonical sys
tem can be estimated by a full order observer;~3! the states of the
original system can be calculated from the output of the full or
observer. A brief review of these results is listed as follows.

The time varying system is represented by the state sp
model

ẋ~ t !5A~ t !x~ t !1B~ t !u~ t !,
(8)

y~ t !5C~ t !x~ t !

wherex(t), u(t), andy(t) are (n31), (p31), and (q31) vec-
tors andA(t), B(t), andC(t) are matrices with appropriate di
mensions. For this system, a full-order observer can be in the f

ẋ̂~ t !5F~ t !x̂~ t !1G~ t !y~ t !1H~ t !u~ t !. (9)

This observer is an asymptotic identity state observer for sys
Eq. ~8! if

H~ t !5B~ t ! and F5A~ t !2G~ t !C~ t ! (10)

F here is a constant matrix with stable eigenvalues. This result
be clearly seen by substituting Eqs.~8! and ~10! into Eq. ~9!,
which yields

ẋ̂2 ẋ5F~ x̂2x!. (11)

The convergence rate of the observer depends on the eigenv
of matrix F.

Given a generalA(t), C(t), and the predetermined eigenvalu
of F, it is difficult to find G(t). However, the procedure to find
G(t) for an observability canonical form is simple. Under certa
conditions, the system Eq.~8! can be transformed into an obser
ability form Eq. ~12! by a Lyapunov transformation.

xG~ t !5Ā~ t !x̄~ t !1B̄~ t !u~ t !
(12)

y~ t !5C̄~ t !x~ t !

whereĀ(t) andC̄(t) are in the forms

Ā~ t !5F A11 A12 ¯ A1q

A21 A22 ¯ A2q

] ] ]

Aq1 Aq2 ¯ Aqq

G ,

where

A i i 5FXni31U I ni21

......
013~ni21!

,

DECEMBER 2001, Vol. 123 Õ 639



-
s

r

e
a
v

d

l

i

t

es.
of

d

f

v-
x-
by

,
se
nt
can

nce
ote
A i j 5@Xni310ni3~nj 21!# for i , j 51,2, . . . ,q and iÞ j , ni andnj

are the observability indices associated with thei th andj th row of
C(t) matrix, I j is j 3 j identity matrix,0i 3 j is i 3 j zero matrix,

X represents a nonzero number.
Nguyen and Lee@10# provide a simple method to findḠ(t) that

satisfiesF̄5Ā(t)2Ḡ(t)C̄(t), whereF̄ is in observability canoni-
cal form with desired eigenvalues. More clearly,F̄ is in the form

F̄5F 2b0

2b1

]

2bn21

U I n21

.........
013~n21!

G . (13)

After obtaining theḠ(t) matrix, we can get an asymptotic full
order observer for system~12!. Since Lyapunov transformation i
a nonsingular transformation, it is straightforward to estimate
states of the original system~8! if the estimations ofx̄(t) are
available.

Some other observer design issues are not addressed in Ng
and Lee@18#. The first one is the selection of the observer eige
values. The decay rate of the observer error is determined by
eigenvalues of the error dynamic matrixF̄. Theoretically, we can
pick eigenvalues at the far left of the complex plane forF̄ to make
the observer outputs converge to the true states very fast. H
ever, fast observer poles may enlarge the effects of sensor n
The selection of the eigenvalues is a compromise between the
response speed and good noise smoothing capability.

Besides the decaying rate, another concern in the observe
sign is the transient performance. Noticing the error dynam
equation~Eq. ~11!!, the overall error response of the observer
determined by theF matrix including both the eigenvalues and th
structure ofF. A large transient error will take more time to di
out if other conditions are the same. Moreover, very large tr
sient error could cause numerical problems in the obser
Hence, small transient error of the observer is desired.

The transient performance of the observer can be predicte
the fact stated in Chen@20#: For a companion form dynamic ma
trix of order n, if all its eigenvalues are distinct, the largest ma
nitude in transient. is roughly proportional to (ulumax)

n21, where
ulumax is the magnitude of the largest eigenvalue. Hence, in or
to have a small transient error, the order of the largest compan
form block in the error dynamic matrixF̄ should be kept as sma
as possible. For a low dimensional dynamic system, the trans
performance of the observer using theF̄ matrix in Eq. ~13! is
satisfactory. But for a high dimensional dynamic system, such
the augmented rigid rotor model with dimension 16, the trans
response of the observer will be too large. For example, if
largest magnitude of the eigenvalues ofF̄ is 10, then the larges
transient response magnitude will be close to the order 1015. To
deal with this problem, we can break the matrixF̄ into small
companion-form block matrix. The dimension of each block
determined by the corresponding observability index. The n
matrix F̄8 has the similar structure of theĀ(t),
640 Õ Vol. 123, DECEMBER 2001
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F̄85F F11 F12 ¯ F1q

F21 F22 ¯ F2q

] ] ]

Fq1 Fq2 ¯ Fqq

G ,

where (14)

Fi i 5F 2b i ,0

2b i ,1

]

2b i ,ni21

U I ni21

......
013~ni21!

G ,

Fi j 50ni3nj
, for i , j 51,2, . . . ,q and iÞ j .

The b’s in Eq. ~14! are determined by the desired eigenvalu
Actually, they are the coefficients of the characteristic equation
each companion form blocks.

To design a full order observer forF̄8, we need to solve the
matrix equation

Ḡ~ t !C̄~ t !5Ā~ t !2F̄8~ t ! (15)

for Ḡ(t). If all-zero columns are eliminated from both left an
right sides of Eq.~15! by noting the special structure ofF̄8, Ā(t),
andC̄(t), Eq. ~15! changes to

Ḡn3q~ t !C̄q3q8 ~ t !5Dn3q , (16)

where the columns ofD consist of the nonzero columns ofĀ(t)
2F̄8(t) and the columns ofC̄8 consists of the nonzero columns o
C̄(t). It is clear thatC̄8 is nonsingular. Equation~16! can be
solved by

Ḡ~ t !5D~ t !C̄821~ t !. (17)

The design procedures are summarized as follows:

1 Transform the original state space model~8! into observabil-
ity canonical form~12! by a Lyapunov transformationx(t)
5P(t) x̄(t), whereP(t) is a nonsingular matrix.

2 Selectn distinct desired eigenvalues for the estimator.
3 Group thesen values intoq groups. Each group hasni ( i

51 . . .q) elements.ni is the observability index of thei th
subsystem. From theseq groups of eigenvalues, getq groups
of b i ,0..ni21 .

4 ObtainF̄8 in Eq. ~14!.
5 ObtainḠ(t) by the formula of Eq.~17!.
6 Use the full-order estimator~9! to estimate the states of~12!,

whereF(t)5F̄8, H(t)5B̄(t), andG(t)5Ḡ(t).
7 Denoting the estimation in step 6 asx̂̄, the estimation of the

original system isx̂5P(t)xR .

The rigid rotor system~7! can be transformed into an obser
ability companion form. This is confirmed by the numerical e
ample in Section 4 and also can be easily checked analytically
substitutingA(t) andC(t) matrices in~7! into the checking con-
ditions ~Nguyen and Lee@18#!. Following the above procedures
we can design a time-varying observer for the rigid rotor who
estimation error will go to zero asymptotically while the transie
performance is satisfactory. The estimation of imbalance force
be obtained by this observer.

From the imbalance force estimation, the estimated imbala
itself can be obtained by direct algebraic calculation. If we den
u152muuz /m, u25muux /m, u35muuxuy /I t , u45muuyuz /I t ,
this method can be formulized as follows:

F u1 u2

u2 2u1

u3 u4

u4 2u3

G F f 1

f 2
G5F f̂ 1r

f̂ 1i

f̂ 2r

f̂ 2i

G , (18)
Transactions of the ASME
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where f 1 and f 2 are the same as in Eq.~3!, and@ f̂ 1r f̂ 1i f̂ 2r f̂ 2i #
T

are the estimated imbalance force or moment. Equation~18! can
be transformed into

F u1

u2

u3

u4

G5F f 1 f 2 0 0

2 f 2 f 1 0 0

0 0 f 1 f 2

0 0 2 f 2 f 1

G21F f̂ 1r

f̂ 1i

f̂ 2r

f̂ 2i

G . (19)

Since the absolute determinant of@2 f 2

f 1
f 1

f 2# is (ḟ41f̈2), which is

always nonzero, we do not need to worry about the singularitie
the calculation during acceleration. The advantage of this met
is its simplicity. The disadvantage is that the effect of noise on
estimation will be presented in the imbalance estimation direc

The simulation result is presented in the next section to ill
trate the above procedures and methods.

4 Simulation
The simulation is done with the parametersL50.5 m,

r 50.1 m, k513107 N/m, c51000 Ns/m, mu50.5 kg,
@uxuyuz#5@0.08,0.2,0.05# m in the body-fixed coordinate system

andf̈5100 rad•s22. Following the time-varying observer desig
procedures, we first obtain the Lyapunov transformation ma
P(t). Then, the equivalent observability canonical form of syste
Eq. ~7! can be obtained. In this simulation, the four groups
eigenvalues of theF̄8 matrix are selected as@211 212 213 214#,
@215 216 217 218#, @219 220 221 222#, and@223 224 225
226#. The Ḡ(t) matrix can be obtained by using the formula E
~17!. All these matrices are listed in the Appendix.

The original system Eq.~7! and the observer dynamic system
step 6 are solved by the Runge-Kutta method. The imbalan
induced translational and conical swinging motions are shown
Fig. 2. Figure 2~a! shows the resonant peak of the translation
motion is reached at about 400 rad•s21 and Fig. 2~b! shows the
resonant peak of the conical motion is reached at about
rad•s21.

The initial states of the observer are all zeros. The output of
observer dynamic system is multiplied byP(t) to get the state
estimation of the original system. The error of the imbalance fo
estimation is shown in Fig. 3. As stated in Section 3, the respo
of the observer is determined by the eigenvalues ofF̄8 and the
transient response magnitude. Since the eigenvalues ofF̄8 are far
from the imaginary axis, the decay rate of the estimation erro
high. The transient magnitude is also satisfactory because
block canonical structure is selected forF̄8 matrix. Therefore, the

Fig. 2 The imbalance-induced vibration of rigid rotor
Journal of Dynamic Systems, Measurement, and Control
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observer error converges to zero well before the rotating sp
hits the critical speeds. This property is desired for active bala
ing purpose.

From the imbalance force estimation, the system imbalance
be estimated using direct algebraic calculation Eq.~19!. The im-
balance estimation results are shown in Fig. 4. The true value
the imbalance parameters are shown by dashed lines in Fig. 4
result shows that the imbalance estimation converges to the
value quickly.

5 Conclusions
This paper presents a new method of the imbalance estima

for the rigid rotor during acceleration. The acceleration will exc
the dynamics of the rotor. Therefore, the static method such as
influence coefficient method cannot be used in this case. By vi
ing the imbalance forces and moments as outputs of a dyna
system, we can augment the states of the rigid rotor mode
include the imbalance forces and moments. The resulting sys
is an autonomous time-varying linear system. Under the assu
tion that the displacement and the swinging angle of the ri
rotor can be measured, a time-varying observer can be desi
by canonical transformation of the original system. Transient p
formance of the observer is improved and the upper bound of
magnitude is determined in this paper by selecting a special st
ture of the estimation error dynamic matrix. The simulation resu
show that the estimation error converges to zero quickly and
transient estimation error is kept small. This estimation meth
can be used in active vibration control or active balanc
schemes for rigid rotor.

Fig. 3 The observer error

Fig. 4 The imbalance estimation by solving algebraic equation
DECEMBER 2001, Vol. 123 Õ 641
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This paper concentrates on the imbalance estimation iss
References and Discussions on other issues of real-time a
balancing of rotating machinery, such as the rotor dynamic m
eling, analysis, and control, actuator and sensor layout, etc, ca
found in Zhou and Shi@22#.
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Nomenclature

I p , I t 5 the polar, and the diametric moments of
inertia of the rotor

L 5 the length of the rotor
OXYZ 5 the stationary coordinate system

RX , RZ 5 the displacements of the mass center of th
rotor in X andZ directions

ṘX , ṘZ 5 the velocities of the mass center of the ro-
tor in X andZ directions
642 Õ Vol. 123, DECEMBER 2001
ues.
tive

od-
n be

he
rds
tive

e

R̈X , R̈Z 5 the accelerations of the mass center of the
rotor in X andZ directions

d, a 5 the magnitude and angle of the imbalance
vector as shown in Fig. 1.

mu , ux , uy , uz 5 the mass and the position of the imbalanc
in body-fixed coordinatexyz

m 5 the mass of the rotor
c, k 5 the viscous damping coefficient and the

spring rate of the bearings
oxyz 5 the body-fixed coordinate system

f,ḟ,f̈ 5 the rotating angle, speed, and acceleration
of the rotor

c, u 5 Euler angles to describe the orientation of
the body-fixed coordinate in the stationary
coordinate.~c, u, f! forms a body 3-1-2
Euler angle set~Kane @21#!

Appendix
The explicit expressions of the matrices used in the numer

study are listed as follows.
P~ t !5

l

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

216.3 1 0 0 100t 0 0 0 0 0 0 0 0 0 0 0

2100t 0 0 0 216.3 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 244 1 0 0 121t 0 0 0

0 0 0 0 0 0 0 0 2121t 0 0 0 244 1 0 0

213104t2 0 1 0 100 100t 0 0 0 0 0 0 0 0 0 0

2100 2100t 0 0 213104t2 0 1 0 0 0 0 0 0 0 0 0

233104t 213104t2 0 1 213106t3 200 100t 0 0 0 0 0 0 0 0 0

13106t3 2200 2100t 0 233104t 213104t2 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 213104t2 0 1 0 100 100t 0 0

0 0 0 0 0 0 0 0 2100 2100t 0 0 213104t2 0 1 0

0 0 0 0 0 0 0 0 233104t 213104t2 0 1 213106t3 200 100t 0

0 0 0 0 0 0 0 0 13106t3 2200 2100t 0 233104t 213104t2 0 1

m

C̄~ t !5F 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

G

Ā~ t !5

l

216.3 1 0 0 100t 0 0 0 0 0 0 0 0 0 0 0

21.633105 0 1 0 1630t 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 163011.633107t 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 3.263107 0 0 0 0 0 0 0 0 0 0 0

2100t 0 0 0 216.3 1 0 0 0 0 0 0 0 0 0 0

21630t 0 0 0 21.633105 0 1 0 0 0 0 0 0 0 0 0

21.63310321.633107t 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

23.33107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 244 1 0 0 120t 0 0 0

0 0 0 0 0 0 0 0 24.4310512100t2 0 1 0 4.43103t 0 0 0

0 0 0 0 0 0 0 0 2.13103t 0 0 1 440014.43107t 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 8.73107 0 0 0

0 0 0 0 0 0 0 0 21.23102t 0 0 0 243 1 0 0

0 0 0 0 0 0 0 0 24.43103t 0 0 0 24.4310512.13103t2 0 1 0

0 0 0 0 0 0 0 0 2440024.43107t 0 0 0 2100t 0 0 1

0 0 0 0 0 0 0 0 28.73107 0 0 0 0 0 0 0

m

Transactions of the ASME



F̄85

l

250 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2935 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

27800 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

22.43104 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 266 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 21600 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 21.83104 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 27.33104 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 282 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 22500 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 23.43104 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 21.73105 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 298 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 23600 0 1 0
4

m

0 0 0 0 0 0 0 0 0 0 0 0 25.9310 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 23.63105 0 0 0

Ḡ~ t !5

l

33.7 100t 0 0

21.63105 1.63103t 0 0

7.73103 160011.63107t 0 0

2.43104 3.33107 0 0

2100t 50 0 0

21.63103t 21.63105 0 0

21.6310321.63107t 1.83104 0 0

23.33107 7.33104 0 0

0 0 38 120t

0 0 24.3310512.13103t2 4400t

0 0 2100t13.43104 4.4310314.43107t

0 0 1.83105 8.73107

0 0 2120t 54

0 0 24400t 24.3310512100t2

0 0 24.4310324.43107t 2100t15.93104

0 0 28.73107 3.63105

m

g

n
n

n

ng
s.,

ol

se

ns.
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