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Rigid rotor dynamic model is widely used to model rotating machinery. In this paper, a

Department of Industrial and speed-varying transient rigid rotor model is developed in the state space form. The states
Ope.fa“OUS Engmee.rmg, of this model are augmented to include imbalance forces and moments. A time-varying
The University of Michigan, observer can then be designed for the augmented system by using canonical transforma-
Ann Arbor, MI 48109 tion. After obtaining an estimation of the imbalance forces and moments as the states of

the augmented system, the estimated imbalance can be directly calculated. This estimation
method can be used in the active vibration control or active balancing schemes for a rigid
rotor. [DOI: 10.1115/1.1409935

1 Introduction several researchef&nospe et al[12]) have pointed out how to

Rotating machines. includina machining tools. industrial turboc_onductimbalance vibration control during the startup through the
g ’ 9 9 ’ ritical speed, their basic method is to interpolate the influence

machinery, and aircraft gas turbine engines, are commonly use fficients between different speeds. This is a “quasi-steady”

industry. Vibration caused by mass imbalance is an important faﬁ'rategy because the requirement of a “steady-state” response is

tor limiting the performance and fatigue life of a rotating systeMpnerited in the influence coefficient method. Very little research
There are two major categories of control methods for the supyrk has been reported on the balancing and active control for the
pression of excessive imbalance-induced vibration. The first cagior system with fast acceleration and low damping ratio. Zhou
egory is balancing. This method tries to eliminate the rotor imbaimd shi[13] found an analytical expression of the imbalance-
ance. Off-line balancing method#Vowk [1]) are widely used in induced vibration of a rotor system during acceleration. From this
practice, but they are usually time-consuming and cannot be usgthlytical expression, a significant suddenly occurring free vibra-
if the distribution of imbalance changes during operation. Som@n component can be found in the imbalance-induced vibration
researcher§Gosiewski[2,3], Van De Vegte and Lakpt], Van De if the acceleration is high and the damping is low. The “quasi-
Vegte[5]) tried to use some kind of mass redistribution device tsteady-state” assumption does not hold under these conditions.
actively balance the rotating systems during operation. Ti#ou and Shi[14] also proposed a real-time active balancing
method directly suppresses the imbalance-induced vibration or $@heme for fast acceleration case. That scheme is based on the
force transmitted to the base by using lateral force actuators suehst squares estimation of the system imbalance of the rotor sys-
as magnetic bearing&nospe et al[6], Lum et al.[7], Herzog tem. In that scheme, a mass redistribution active balancing device
et al.[8]). All of the above research concentrated on the constdftequired to excite the system dynamics and hence make the
spin-speed case: the so-called “steady-state” case. Because of @gmation converge fast. ) .
constant spin-speed assumption, the influence coefficient methodf this paper, a time-varying observer is developed to estimate
is used to model the rotor system. The whole rotor dynamics dft¢ imbalance force and the imbalance itself of a rigid rotor sys-
lumped into constants: the influence coefficients. The imbalance§&n during acceleration. This formulation does not require steady-
embedded in the influence coefficients. The estimation of the ifitAt® response because the rotor is modeled by dynamic differen-

balance, which is very important in both the balancing and acti%@l equations. ?/Iore(;ve;, th'st formulal;ﬂon ass%n;]es that thte
vibration control schemes, is fulfilled by the estimation of influYNamIC parameters of rotor system are known and hence no extra
ence coefficients. excitation is required. This result can be used in both active bal-

An alternative wav to estimate the svstem imbalance is rgpcing and direct vibration control schemes for rigid rotors.
y Y PrO” This paper consists of five sections. In Section 2, a speed-

vided by Reinig and DesrochefS] and Zhu et al[10]. In their varying transient dynamic model of a rigid rotor will be presented.
methods, the states of the rotor dynamic system are augmeni&d o mylated in a form suitable for imbalance force estimation.
to include the imbalance forces. An ob_server_ is then used to esthis dynamic model is a time-varying linear model due to the
mate the augmented states set. Again, their methods only dg@loscopic effect and the inclusion of the imbalance forces in the
with the constant spin-speed case. Hence, the enlarged systemdfages. The time-varying observer design problem is addressed in
time invariant linear system. The traditional Luenberger ObserVSéction 3. Section 4 gives some simulation results to show the
(Luenbergef11]) can be used to estimate the imbalance forceseffectiveness of this imbalance estimation scheme. Conclusions
Besides the constant rotating speed case, the imbalance vilfig given in the last section.

tion control needs to be completed during speed-varying transient
time to save time and improve performance in some other casgs. Speed Varying Dynamic Model of Rigid Rotors
For example, a machining tool needs to be engaged in cutting as i i )

soon as the spindle goes into steady state in high-speed machinthe dynamics of rigid rotor are very important because the
ing. The vibration control has to be active during the accelerati¢igid rotor model has been the model used for many practical

period to reduce the effect on the cutting cycle time. AlthougfPtors. The geometric setup is shown in Fig. 1.
The basic assumptions used in the modeling procedure are:

'Author to whom all correspondence should be addressed. (a) The rotor is rigid with circular cross section and the imbal-
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(c) The angular acceleration of the rotational motion is as-
Z sumed a known constant. The linear acceleration speed profile is
common for machining spindles. We also assume that the rotating
x angle, speed, and acceleration are known. They can be easily mea-
sured by attaching an encoder to the spindle.
Bearing (d) The lateral vibration motions are assumed small to simplify
the dynamics.
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Al oot Two coordinate systems are used in the derivation: the body-

fixed coordinateoxyz and the inertial coordinate XovZ The
Fig. 1 The geometric setup of rigid rotor model body-fixed y-axis is the rotating axis of the shaft and and
z- axes are defined by the other two principal inertia axes of
the rotor. The origin okyzis selected as the geometric center of
the shaft. TheXYZcoordinate system is the stationary coordinate
dampers in two orthogonal directions with the same spring rat8srest. _ _ i _
and damping coefficients. The bearings locate at each end of thd Ne elastic and damping forces provided by the bearings are
shaft and the mass center of the rotor is located at the midpoint
between the two bearings. This assumption simplifies the dynamic _ _
model because the translational motion and the conical motion of F=—2K[Rx Rzl Mi=—KL2[0 y]7/2 1
the rotor are uncoupled under this assumption. The translational Fe=—2c[Ry Ry, M.=—cL20 ¢]7/2° (1)
motion in the two orthogonal direction& and Z) is also un-
coupled under this assumption. This simplified rigid rotor model
is used in the following derivation, but the extension to a moré€he equation of motion can be obtained by using Newton’s law
general rigid rotor model is quite straightforward. for a rigid body

16+ CcL20/2+KL20/12— 1 jihp— | pipp=m,d( P2 sin(a— )+ d cog a— ¢))uy

L h+ CL2YI2+ KL2Y2+ 1 ,p 6+ | yp0=m,d( — ¢? cog a— ¢p) +  sin(a— ¢>))uy' .
MR+ 2cRy+ 2kRy= —m,d( ¢ sin(a— ¢) — > cog a— ¢))

MR, +2cR,+ 2kR,=m,d($? sin(a— ¢) + ¢ cog a— ¢))

Using the substitution afi,=d cosa andu,=d sin« and rewriting Eq(2) into state space form, we can get the state space model for
rigid rotor,

m || n n
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
- RX. 0 0 0 0 0 0 1 0 r RX- 0 0
R, 0 0 0 0 0 0 0 1 R, 0 0
0 2k 2 7 _
_Z 0 o - o 0 0 My
d| ¥ m m .lﬂ N m m Vl}
dr| 0o - 2k 0 0 0o — 2 0 0 RX Mty m,u. 12l (3)
R.Z m m R.Z m m
0 .. . 2]
o 0 0 _ k_Lz Lo 0 _ C_L2 I,¢ 5 MUty U
L ¥ 20, I, 2, I |LY I, 1,
0 o L Ko o bt <L Dulyte Mttty
L I, 21, I, 21, 7 I,
A(r) B
|
where f,= é cos¢— & sing, f,= b sinp+¢? cosg, are known d/F 0 1\(E
functions of time. atl e =\ Zaip —aifLE) 4)

Observing thaf, and f; are the real and imaginary parts of a

complex numberF=(¢?+ig¢)e™'* (actually, F=—d*(e™'?)/ e can augment the state space model and make the imbalance
dt?) and force be states. In fact,
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uUyU; uUxUy lm[( utytz uxyi)F}
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~| RelFy) | ©)
L Im{F}

Re{-} and In{-} denote the real and imaginary part of a comple
number.F; and F, are F multiplied by complex constants as

defined in Eq(5). It is obvious thaf; andF; also satisfy Eq(4).
Equation(4) can be rewritten in real domain as

0 0 1 0

I I

d| fi 0 0 0 1 fi

ai\ ]l 0o 36 0 S|V F] (6)
Ji _3¢'§ 0 _¢ 0 Ji

\

Ay(r)

wheref, andf; are the real and imaginary part Bf Combining

Since the rotor is rigid, these can be obtained by measuring the
motion of any two non-coplanar points on the rotor.

* The model is a linear time variant model because the rotating
speed is included in the dynamic matricksandA; .

Using this augmented model, the imbalance estimation problem
is transformed to a state estimation problem. A linear observer
can give the estimation of states from incomplete states
measurements.

3 Time Varying Observer Design

It is well known that the states of a time-invariant linear system
can be reconstructed by a linear time-invariant observer. An enor-
mous body of literature has been published on this topic. An ex-
cellent review can be found in O’'Reilljl5]. Compared to the
time-invariant observers, relatively few papdi/olovich [16],
Yuksel and Bongiornd17], Nguyen and Led18], Shafai and
garroll [19]) deal with observers for time-varying systems, such
as the dynamic system of E(}). In this paper, the design of time
varying observers follows the basic steps in Nguyen and[ L8k

The essential results of their work are thét) a linear time-
varying system can be transformed into an observability canonical
form under certain condition$2) the states of the canonical sys-
tem can be estimated by a full order obser8f;the states of the
original system can be calculated from the output of the full order
observer. A brief review of these results is listed as follows.

The time varying system is represented by the state space
model

x(t)=A(t)x(t) +B(t)u(t),

y(t)=C(t)x(t)

wherex(t), u(t), andy(t) are hx1), (px1), and gx1) vec-
tors andA(t), B(t), andC(t) are matrices with appropriate di-

®

Eq. (3) through Eq.(6), the augmented state space model of th@ensions. For this system, a full-order observer can be in the form

rigid rotor is

A Yy Y,

g 0 A 0 x,
0 0 Aq(t) %
y=[Rx Rz 6 y]"

where  x=[RyRz 6 y Ry Rz 0 4 1, f1; f1, f15 For Foi for £,
fy,, f1j andf,,, f,; are the real and imaginary partef andF;,
respectivelyA(t) andA;(t) are the matrices shown in E) and
Eq. (6). Y, andY, are defined as

() =F(1)R(t)+ G(t)y(t) + H(t)u(t). 9)
This observer is an asymptotic identity state observer for system
Eq. (8) if

H(t)=B(t) and F=A(t)—G(t)C(t) (10)
F here is a constant matrix with stable eigenvalues. This result can
be clearly seen by substituting Eq®8) and (10) into Eq. (9),
which yields

K —x=F(X—X). (11)

The convergence rate of the observer depends on the eigenvalues
of matrix F.

0 000 0000 Given a general\(t), C(t), and the predetermined eigenvalues
0 0 0O 0 0 0 O of F, it is difficult to find G(t). However, the procedure to find
000 O 00 0 O G(t) for an observability canonical form is simple. Under certain
conditions, the system E¢B) can be transformed into an observ-
0 0 0 O 0 0 0 O ability form Eq.(12) by a Lyapunov transformation.
Y= Y= . — _
1000 0 000 () =AX() +B(Hu() 1
0 1 0 O 0 0 0O 0= Bt (12)
0 0 0 O 1 0 0 O _ _ yF ) =CX()
0 0 0 O 0 1 0 o whereA(t) andC(t) are in the forms
Remarks: A A Aig
. — Ax Az Ay
» The system imbalance,, u,, u,, andu, are not shown At)=| . . . ,
explicitly in Eq. (7). They are implicitly included in the model as : : :
the initial conditions of fq, f4; 5, foi]. Ag Ay Aqgq
» Since this paper concentrates on the imbalance estimation
problem, the control inputeither lateral forces or balancer-Where
induced forcekis not included in the model. It is straightforward i1
to include these forces.
« The output of the model is the displacement of the mass Aii = | Xnx1 o '
1X(n;—1)

center and the swinging angle of the rotor ab¥@ndZ direction.
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Ajj =[Xn, <100 x(n 1) for i,j=1,2, ... g andi#j, n; andn, [Fyy Fip o Fpg]
are the observability indices associated withitiheandjth row of F= Fa1 F.22 Faq
C(t) matrix, I; is j X | identity matrix,0;.j is i X | zero matrix, : '
L Fql Fq2 qu.
10---0 0 0 - 0 0 0 - 0]) where (14)
X0--0 1 0 [ —Bio 1
’ l n—1
X0-+0 X 0 —Bia
.. . Fi= N .
C(n)= o1} a. g | Qi)
X000 X O -+ 0 O 0 - . -
X0 -0 X 0 Fij=0nixnj, fori,j=1,2,...0 andi#j.
The B's in Eq. (14) are determined by the desired eigenvalues.
L ny Ny n, 1) Actually, they are the coefficients of the characteristic equation of

each companion form blocks. .
To design a full order observer fdt¥', we need to solve the

X represents a nonzero number. matrix equation

Nguyen and Le¢10] provide a simple method to fin@(t) that o L
satisfiesF=A(t) — G(t)C(t), whereF is in observability canoni- G(1)C(t)=A(t)—F'(1) (15)

cal form with desired eigenvalues. More cleaflyis in the form ¢, (1) If all-zero columns are eliminated from both left and

y right sides of Eq(15) by noting the special structure Bf, A(t),
o _BO Ih-1 andC(t), Eq. (15) changes to
F= G VU ) (13) = =
. 0 Gan(t)Cqu(t):Danv (16)
— B, 1% (n—1)

where the columns oD consist of the nonzero columns E(t)

After obtaining theG(t) matrix, we can get an asymptotic full- —F'(t) and the C°|Umﬂ§ oF’ consists of the nonzero columns of
order observer for systef12). Since Lyapunov transformation is C(t). It is clear thatC’ is nonsingular. Equatiort16) can be
a nonsingular transformation, it is straightforward to estimate tif@lved by
states of the original syste if the estimations ofx(t) are ~ = _
available. ’ yster®) XV G(H=DMC (V). an

Some other observer design issues are not addressed in Nguiee design procedures are summarized as follows:
and Le€[18]. The first one is the selection of the observer eigen-
values. The decay rate of the observer error is determined by th
eigenvalues of the error dynamic matfix Theoretically, we can

pick eigenvalues at the far left of the complex planefdo make 5 gejectn distinct desired eigenvalues for the estimator.
the observer outputs converge to the true states very fast. How- Group thesen values intoq groups. Each group has, (i
ever, fast Qbserver pc_)les may en_large the effepts of sensor noise. _41 .q) elementsn; is the observability index of thith
The selection of the elgenvalu_es is a compromise bgtween the fast subsystem. From thespgroups of eigenvalues, ggtgroups
response speed and good noise smoothing capability. of B,
Besides the decaying rate, another concern in the observer de- 'O”'—Tl
sign is the transient performance. Noticing the error dynamic 4 OPtainF’ in Eq. (14).
equation(Eq. (11)), the overall error response of the observer is 5 ObtainG(t) by the formula of Eq(17).
determined by th& matrix including both the eigenvalues and the 6 Use the full-order estimatd®) to estimate the states (f2),
structure ofF. A large transient error will take more time to die ~ WhereF(t)=F', H(t)=B(t), andG(t) =G(t).
out if other conditions are the same. Moreover, very large tran-7 Denoting the estimation in step 6 ®sthe estimation of the
sient error could cause numerical problems in the observer. original system ik=P(t)X.
Hence, small transient error of the observer is desired.
The transient performance of the observer can be predicted

el Transform the original state space mo@linto observabil-
ity canonical form(12) by a Lyapunov transformatior(t)
=P(t)x(t), whereP(t) is a nonsingular matrix.

The rigid rotor systen{7) can be transformed into an observ-
the fact stated in Chef20]: For a companion form dynamic ma- 2 '“tly (_:orgpar_uon4forn;. -ll-h's IS ct())nflrm_eid bﬁ/ tfll(ednumelrlqal ”ex-b

: . P i ample in Section 4 and also can be easily checked analytically by
trix of order n, if all its eigenvalues are distinct, the largest magsubstitutingA(t) and C(t) matrices in(7) into the checking con-

nitude in transient. is roughly proportional to\(n,0)" %, where 7. :
|\ |max is the magnitude of the largest eigenvalue. Hence, in orc\%ﬂons (Nguyen and Le¢18). Following the above procedures,

to have a small transient error, the order of the largest companiof. o design a time-varying observer for the rigid rotor whose
. ! = 9 Paniimation error will go to zero asymptotically while the transient
form block in the error dynamic matrik should be kept as small

: ) . X .performance is satisfactory. The estimation of imbalance force can
as possible. For a low dimensional dynamic system, the transi obtained by this observer.
performance of the observer using tRematrix in Eq. (13) is From the imbalance force estimation, the estimated imbalance

satisfactory. But _fo_r a high dimensi_onal_ dynamic system, SUCh fiSelf can be obtained by direct algebraic calculation. If we denote
the augmented rigid rotor model with dimension 16, the transiept — _m u,/m, g,=m,u,/m, fz=myu,uy /I, §5=myu,u,/l,,

response of the observer will be too large. For example, if thgis method can be formulized as follows:
largest magnitude of the eigenvaluesFofs 10, then the largest

transient response magnitude will be close to the ordét. T® 0 6 fir
deal with this problem, we can break the matFfixinto small O, —01|[f, fli
companion-form block matrix. The dimension of each block is 0. o fJ: Nk (18)
determined by the corresponding observability index. The new 8 4 2
matrix F’' has the similar structure of th&(t), 0, —03 fa
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wheref, andf, are the same as in E), and[f,, T T2 T217 L ' :
are the estimated imbalance force or moment. Equ4ti8hcan i?((n"]’/’:z;
be transformed into 0.4 — A rad/)
e o A f(radls))
0, fr 2 0 0 fir 0.3
2 _ All . (19) ;5
03 0 0 fl fz f2r q‘g
04 0 0 —f, f;] |t 3
@]
Since the absolute determinant[&ff2 Ii] is (¢*+ ¢?), which is
always nonzero, we do not need to worry about the singularities of
the calculation during acceleration. The advantage of this method
is its simplicity. The disadvantage is that the effect of noise on the

estimation will be presented in the imbalance estimation directly.
The simulation result is presented in the next section to illus-
trate the above procedures and methods.

4 Simulation

The simulation is done with the parametets=0.5 m,
r=0.1 m, k=1x10" N/m, ¢=1000 Ns/m, m,=0.5 kg,
[uxuyu,]=[0.08,0.2,0.05m in the body-fixed coordinate system,

and ¢=100 rads 2 Following the time-varying observer design
procedures, we first obtain the Lyapunov transformation matrix
P(t). Then, the equivalent observability canonical form of system
Eq. (7) can be obtained. In this simulation, the four groups of
eigenvalues of th&’ matrix are selected 4s-11 —12 —13 —14],
[-15-16 —17 —18],[—19 —20 —21 —22], and[—23 —24 —25
—26]. The G(t) matrix can be obtained by using the formula Eq.
(17). All these matrices are listed in the Appendix.

The original system Ed7) and the observer dynamic system in
step 6 are solved by the Runge-Kutta method. The imbalance-
induced translational and conical swinging motions are shown in
Fig. 2. Figure 2a) shows the resonant peak of the translational
motion is reached at about 400 rad" and Fig. Zb) shows the
resonant peak of the conical motion is reached at about 700

Fig. 3 The observer error

t(second)

3

x10
3 T T T T
2.5 9,(dimensionless)
2 /84(dimensionless)
g 15
g
=
)
£ 1
0.5 J 8(m)
N P
_05 1 1 1 1
0 1 2 3 4

t(second)

rad-s L.

Fig. 4 The imbalance estimation by solving algebraic equation

The initial states of the observer are all zeros. The output of the

observer dynamic system is multiplied ®(t) to get the state

estimation of the original system. The error of the imbalance foreshserver error converges to zero well before the rotating speed
estimation is shown in Fig. 3. As stated in Section 3, the responsigs the critical speeds. This property is desired for active balanc-

of the observer is determined by the eigenvalue$'ofand the
transient response magnitude. Since the eigenvalugs$ afe far

ing purpose.
From the imbalance force estimation, the system imbalance can

from the imaginary axis, the decay rate of the estimation error ke estimated using direct algebraic calculation €§). The im-
high. The transient magnitude is also satisfactory because falance estimation results are shown in Fig. 4. The true values of

block canonical structure is selected f&r matrix. Therefore, the

0.01

0.005

Ry(m)
(=]

-0.005

-0.01 : : : -
0 2 4 6 8 10
b
0.1 ®)
0.05
El
g o e
==}
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0.1 :
0 2 4 6 8 10
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Fig. 2 The imbalance-induced vibration of rigid rotor

Journal of Dynamic Systems, Measurement, and Control

the imbalance parameters are shown by dashed lines in Fig. 4. The
result shows that the imbalance estimation converges to the true
value quickly.

5 Conclusions

This paper presents a new method of the imbalance estimation
for the rigid rotor during acceleration. The acceleration will excite
the dynamics of the rotor. Therefore, the static method such as the
influence coefficient method cannot be used in this case. By view-
ing the imbalance forces and moments as outputs of a dynamic
system, we can augment the states of the rigid rotor model to
include the imbalance forces and moments. The resulting system
is an autonomous time-varying linear system. Under the assump-
tion that the displacement and the swinging angle of the rigid
rotor can be measured, a time-varying observer can be designed
by canonical transformation of the original system. Transient per-
formance of the observer is improved and the upper bound of the
magnitude is determined in this paper by selecting a special struc-
ture of the estimation error dynamic matrix. The simulation results
show that the estimation error converges to zero quickly and the
transient estimation error is kept small. This estimation method
can be used in active vibration control or active balancing
schemes for rigid rotor.

DECEMBER 2001, Vol. 123 / 641



This paper concentrates on the imbalance estimation issues. Ry, R, =

References and Discussions on other issues of real-time active

balancing of rotating machinery, such as the rotor dynamic mod- d, o=

eling, analysis, and control, actuator and sensor layout, etc, can be

found in Zhou and Shi22]. My, Uy, Uy, U, =
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m
c, k =

the accelerations of the mass center of the
rotor in X andZ directions

the magnitude and angle of the imbalance
vector as shown in Fig. 1.

the mass and the position of the imbalance
in body-fixed coordinateyz

the mass of the rotor

the viscous damping coefficient and the
spring rate of the bearings

. oxyz = the body-fixed coordinate system
Zg?egﬁgmol\lﬁ%b Qd;SSZ%dB;sggggl_ogy Program, Cooperative &, $,¢ = the rotating angle, speed, and acceleration
of the rotor
Nomenclature i, 6 = Euler angles to describe the orientation of
the body-fixed coordinate in the stationary
Iy, Iy = the polar, and the diametric moments of coordinate(, 6, ¢) forms a body 3-1-2
inertia of the rotor Euler angle setKane[21])
L = the length of the rotor
OXYZ = the stationary coordinate system
Ry, Rz = the displacements of the mass center of the .
rotor in X andZ directions Appendix
Ry, R; = the velocities of the mass center of the ro-  The explicit expressions of the matrices used in the numerical
tor in X and Z directions study are listed as follows.
|
] n
1 0 0 o0 0 0 0 o0 0 0 0 o0 0 0 0
0 0 0 o0 1 0 0 0 0 0 0 o0 0 0 0
0 0 0 o0 0 0 0 o0 1 0 0 o0 0 0 0
0 0 0 o0 0 0 0 0 0 0 0 o0 1 0 0
-16.3 1 0 o0 100 0 0 0 0 0 0 o0 0 0 0 0
- 100 0 0 0 -163 1 0 o0 0 0 0 o0 0 0 0
0 0 0 o0 0 0 0 0 —44 1 0o o0 121 0 0 o0
0 0 0o o 0 0 0 0 -121 0 0o o —44 1 0 o0
PO=I 1102 0 1 0 100 100 0 o0 0 0 0 0 0 0 0 0
-100 —-100 0 0 —1x10%? 0 1 0 0 0 0 0 0 0 0 0
-3x10%t —1x10%% 0 1 —1x10°® 200 0@ 0 0 0 0 0 0 0 0 o0
1x10°t3 -200 —100¢ 0 -—3x10%t —-1x10® O 1 0 0 0 0 0 0 0 0O
0 0 0o o 0 0 0 0 -1x10%? 0 1 0 100 100 0 o0
0 0 0o o 0 0 0 0 -100 - 100 0 0 —1x10%? 0 1 0
0 0 0o o0 0 0 0 0 —-3x10%t -1x10%% 0O 1 —1x10°8 200 0@ 0
L 0 0 0 o0 0 0 0 0 x10°%8 -200 -10a O -3x10t -—1x10" 0 1]
1 0 00 0 OO OOOOOTUOTGOTUWO
_ 0 00O0O1 0 O0O0OO0OO0OO0OTO0TO0OTUO0OSFUO0
cv= 0O 0 0OOO 0O OO T11O0000O0TUO0
0 00OOO0OO0O O OOTUOTUOT ODT1IO0O0
m n
-16.3 1 0 0 100 0 0 0 0 0 0 0 0 0 0 0
-1.63x10° 0 1 0 1630 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1636-1.63x10t 0 0 O 0 0 0 O 0 0 0 0
0 0 0 O0 3.26¢10 0 0 0 0 0 0 0 0 0 0 0
- 100 0 0 0 -16.3 1 0 0 0 0 0 0 0 0 0 (
-163a 0 0 0 -1.63x10° 0 1 0 0 0 0 0 0 0 0 0
-1.63x10°-~1.63x10t 0 0 O 0 0 0 1 0 0 0 0 0 0 0 (
_ —-3.3x10' 0 0 0 0 0 0 0 0 0 0 0 0 0o o
AlD= 0 0 0 0 0 0 0 0 —44 1 0 0 126 0 0 0
0 0 0 O 0 0 0 0 -44x10°+2106> 0 1 O 4.4¢10°% 0 0 O
0 0 0 0 0 0 0 0 2.X10°% 0 0 1 4400+ 4.4X 107t 0 0 0
0 0 0 0 0 0 0 0 0 0 0 O 8710 0 0 0
0 0 0 0 0 0 0 0 —1.2x10% 0 0 0 —43 1 0 0
0 0 0 O 0 0 0 O —4.4%x10% 0 0 0 —44xX10P+21x10°%% 0 1 O
0 0 0 0 0 0 0 0 -—4400-4.4x10t 0 0 O 2100 0 0 1
B 0 0 0 0 0 0 0 0 -8.7x 10 0 0 0 0 0 0 q
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- 50 1 0 O 0 0 0 O 0 0 0 O 0 0O 0 0
—935 0 1 0 0 0O 0 O 0 0 0 O 0 0O 009
—7800 0 0 1 0 0O 0 O 0 0 0 O 0 0O 0 p

—24x10* 0 0 O 0 0 0 O 0 0 0 O 0 0 0 (
0 0 0 O —66 1 0 O 0 0 0 O 0 0 0 (
0 0 0 O —1600 0 1 0 0 0 0 O 0 0 0 ¢
0 0 0 0 —18x10* 0 0 1 0 0 0 O 0 0 0 O
— 0 0 0 0 —73x10* 0 0 O 0 0 0 O 0 0 0 O
F= 0 0 0 O 0 0 0 O —82 1 0 O 0 0 0 O
0 0 0 O 0 0 0 0 —2500 0 1 0 0 0 0 O
0 0 0 O 0 0 0 0 —-34x10* 0 0 1 0 0 0 O
0 0 0 O 0 0 0 0 —1.7x10° 0 0 © 0 0 0 O
0 0 0 O 0 0 0 O 0 0 0 O —98 1 0 O
0 0 0 O 0 0 0 O 0 0 0 0 -—3600 0 1 0
0 0 0 O 0 0 0 O 0 0 0 0-59x10" 0 0 1
& 0 0 0 O 0 0 0 O 0 0 0 0-36x10°0 0 O O.
[ |
33.7 10@ 0 0
—-1.6x10° 1.6x10% 0 0
7.7x10° 1600+ 1.6x 10"t 0 0
2.4x 10 3.3x10 0 0
—10x 50 0 0
—-1.6x10% —-1.6x10° 0 0
—1.6x10°-1.6x 10t 1.8x10* 0 0
_ —3.3x10 7.3x 10 0 0
= 0 0 38 120
0 0 —4.3x10°+2.1x 10°%? 4400
0 0 210Q+3.4x 10 4.4<10°+4.4x 10"t
0 0 1.8<10° 8.7x 10
0 0 —12t 54
0 0 —440a —4.3x10°+ 21002
0 0 —4.4x10°-4.4x10t  2100+5.9<10*
b 0 0 —-8.7x10 3.6x10°
[
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