ECE/Comp. Sci. 352 – Digital System Fundamentals

Homework #2

Fall 2000

Homework 2 covers materials in sections 2.5-2.8, 3.1-3.8, supplement 1. You need NOT turn in the homework. However, you are strongly advised to work it out. Short solutions will be posted on course web home page shortly. We encourage you to work with your classmates as a group so that you can learn from each other.

Problems labeled with an (*) indicate that a solution is available in the Prentice Hall companion Website Gallery.

1. (essential prime implicants) Text book problem 2-19(b), 2-19(c)
2. (simplification) Text book problem 2-20 (a), (c)
3. (simplification) Text book problem 2-21 (a)
4. (simplification with don’t cares) Text book problem 2-25 (a), (b)
5. (simplification with NAND gate) Text book problem 2-27(a)
6. *(Implementation with NAND) Text book problem 2-28 (a), (b)
7. *(multilevel realization with NAND) Text book problem 2-29(b)
8. *(multilevel realization with NOR) Text book problem 2-30(a)

23. Addition of two numbers $X = X_4X_3X_2X_1$ and $Y = Y_4Y_3Y_2Y_1$ is performed using the carry lookahead technique.

(i) Write the equations for P_i (propagate), G_i (generate) and S_i (sum).

(ii) Write the equations for C_2, C_3, C_4 and C_5 as functions of G_i, P_i and C_1.

(iii) For $X = 1100$ and $Y = 0110$ and $C_1 = 0$, write the values of P_i, G_i, C_i and S_i (for $i = 1, 2, 3, 4$) and C_5.

(iv) Two 4-bit carry lookahead adders (CLA) are connected to build an 8 bit adder. The connection is such that the first 4-bit CLA gives outputs (least significant bit) S_1 to S_4 and the other CLA gives outputs S_5 to S_8 (most significant bit). The carry out C_4 of the first CLA is the carry in of the second CLA. Assume that all input bits and their complements are available. Also assume that each CLA is implemented using AND, OR gates only. How many gate delays are required to generate S_1 to S_4? How many gate delays are required to generate S_5 to S_8?