Homework questions

Momentum questions:

\[0 = \frac{d}{dt} \int_{C_v} p \, dV + \int_{C_s} p \mathbf{v} \cdot d\mathbf{A} \]

New in mom it's:

\[F_x = \frac{d}{dt} \int_{C_v} u \, p \, dV + \int_{C_s} u \mathbf{p} \mathbf{v} \, d\mathbf{A} \]

\[\begin{align*}
E_{f_x} &= \frac{d}{dt} \int_{C_v} u \, p \, dV + \int_{C_s} u \mathbf{p} \mathbf{v} \, d\mathbf{A} \\
F_y &= u - v \\
F_z &= w
\end{align*} \]

\[\text{Easier than mass coz} \]

\[3x \]

\[U \text{ is in eq} \]

\[u \mathbf{p} \mathbf{v} \cdot d\mathbf{A} \]

\[1000 \text{ kg/m}^3 \]

\[\text{speed} = 1.414 \text{ m/s} \]

\[\mathbf{v} = 1 \text{ m/s} \hat{i} - 1 \text{ m/s} \hat{j} \]

\[\text{Speed} \]

\[\text{area A} \]

\[\text{density} \]

\[\int_{C_s} p \mathbf{v} \cdot d\mathbf{A} = p \mathbf{v} A \]

\[\int_{C_s} u \mathbf{p} \mathbf{v} \cdot d\mathbf{A} = v \cos \theta \cdot p \mathbf{v} A \]
\[F_x \] - solids
pressures
shear forces
body forces

unsteady hardest part... coming

another complication

\[U_{xyz} \]

relative velocity?

on ground test vs engine @ steady flight speed

aircraft

vs aircraft on runway with zero wheel friction